

NTN-SNR LINEAR MOTION: LINEAR ACHSEN AXE

www.ntn-snr.com

NTN-SNR Die STÄRKE EINER UNTERNEHMENSGRUPPE

Im Konzernverbund mit der japanischen Firma NTN gehören wir weltweit zu den größten Wälzlagerherstellern.

Seit 1985 ist NTN-SNR in der Lineartechnik zu Hause mit der Zielsetzung, dem Markt ein komplettes und marktfähiges Produktprogramm zu bieten. Aus dieser Position heraus bieten wir unseren Kunden ein hohes Maß an "Added value" bezüglich Service, Qualität und Produktvielfalt.

Unsere Vertrieb- und Anwendungsingenieure stehen Ihnen jederzeit zur Verfügung. Der Beratungs- und Berechnungsservice basiert auf langjährigen branchenübergreifenden Erfahrungen. Das bedeutet weniger Konstruktionsaufwand und Kosten auf Seiten der Anwender.

Unsere Vertriebs- und Anwendungsingenieure stehen Ihnen mit ihrem Fachwissen gerne zur Verfügung. Wir freuen uns auf Ihre Anfragen. Unser Ziel ist es, gemeinsam zu konstruktiven Lösungen zu kommen.

Produktion in Bielefeld

Produktqualität, Wirtschaftlichkeit und hoher Anwendernutzen bilden das Fundament einer strategischen Partnerschaft zwischen NTN-SNR und Ihnen – unseren Kunden.

Vorteile:

- Komplettes Programm an Linearprodukten
- Produktionsanlagen in Europa und Asien
- Optimaler Support durch unseren technischen Vertrieb und unsere Anwendungsingenieure in Ihrer N\u00e4he - weltweit
- Produkte auf dem aktuellen Stand der Technik (patentierte Lösungen)
- Moderne Produktion um höchste Produktqualität zu gewährleisten
- Gut organisiertes Logistiknetzwerk zur termingerechten Lieferung
- Herausfinden der wirtschaftlichsten Lösungen zusammen mit unseren Kunden

NTN-SNR unterstützt Sie auf dem Weg zur Zuverlässigkeit und Leistungsfähigkeit.

SNR - Linearachsen der Baureihe AXE sind universell einsetzbare Module, die den stetig wachsenden Anforderungen an die Automatisierung von Montage- und Fertigungsabläufen Rechnung tragen.

Sie eignen sich für unterschiedlichste Anwendungen in verschiedenen Industriezweigen wie zum Beispiel:

- Verpackungs- und Druckmaschinenbau
- Sonder- und allgemeiner Maschinenbau
- Automobilindustrie
- Automatisierungs- und Montagelinien
- Holz- und Papierindustrie
- Medizintechnik
- und viele mehr

Die Baureihe AXE ist nach dem Baukastenprinzip aufgebaut und bietet je nach Aufgabenstellung verschiedene Antriebssysteme und vielfältige Ausstattungs- und Kombinationsmöglichkeiten bei kürzester Lieferzeit.

Vorteile:

- Einfache Produktauswahl und schnell konfigurierbar
- Standardkombinationen für 2 und 3 Achssysteme
- Vielfältiges Zubehörprogramm an Verbindungselementen, Getrieben, Antriebsadaptern und Endschaltern
- Die Linearachsen k\u00f6nnen mittels Nutensteinen oder speziellen Befestigungsleisten miteinander verbunden werden.
- Mehrachssysteme können mit Getrieben, Kupplungen, Kupplungsglocken, Schaltern und zusätzlich mit Energieketten ausgerüstet sein.

Dieser technische Katalog gibt einen Überblick über unser Programm an Linearachsen und ist die Grundlage für den Dialog mit **Ihnen – unseren Kunden.**

Inhalt

1	Grundlagen Linearachsen	5
	Produkteigenschaften	
1.2	Antriebssysteme	7
1.3	Führungssysteme	8
1.4	Auswahlkriterien	9
2.	Systemtechnologie	10
2.1		10
2.2		
	Sicherheitshinweise	
-	Bestimmungsgemäße Verwendung	
	Koordinatensystem	
2.6		
2.7		
2.7.1		
2.7.2	 ,	
	 Steifigkeit	13
2.9		
	Präzision	
	Getriebeauswahl	
2.11.1	Maximale Betriebsdrehzahl	15
2.11.2	Maximales Beschleunigungsmoment	15
	Nenndrehmoment am Antrieb	
2.12	Antriebsauslegung	16
2.13	Auswahl von Linearachsen mit Zahnriemenantrieb für um 90° gekippte Montage (Wandmontage)	16
3.	Montage und Inbetriebnahme	4.5
	Transport und Lagerung	
	Gestaltung Montageflächen / Montagetoleranzen	
3.3		
3.4		
3.5		
3.6		
3.7		21
3.8		
3.9		
3.10		
3.11		
3.12		
3.12.1.		
3.12.2.	· · · · · · · · · · · · · · · · · · ·	
3.12.3.		
3.12.4		
3.12.5		
3.13	Inbetriebnahme von Linearachsen	30
4.	Wartung und Schmierung	Q+
4.1	Allgemeine Informationen	
4.1	Schmierung	
4.3	Schmierstoffe.	
4.4	Schmiermethoden	
4.4.1.		
4.4.2.	Zentralschmierungen	32

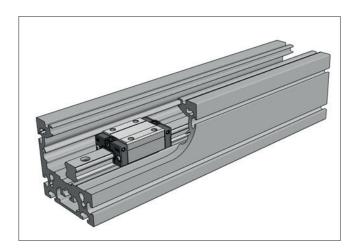
4.5	Schmierstellen	33
4.6	Schmiermengen	33
4.7	Schmierintervalle	34
4.8	Austausch Abdeckband	35
4.8.1	Austausch Abdeckband bei Linearachsen AXE110 und AXE160	35
4.9	Verschleißteil - Sets	36
	CND Lineareabaan AVE	
5	SNR - Linearachsen AXE	
5.1	Übersicht	
5.1.1		
5.1.2	Hauptparameter	
5.2	AXE Efficiency Line Achsen mit Zahnriemenantrieb	
5.2.1	Aufbau	
5.2.2	Abmessungen / Technische Daten	
5.2.3	Maximale statische Belastbarkeit	
5.2.4	Dynamische Tragfähigkeit	
5.3	AXE Efficiency Line Achsen mit Zahnriemen - Ω - Antrieb	50
5.3.1	Aufbau	
5.3.2	Abmessungen / Technische Daten	
5.3.3	Maximale statische Belastbarkeit	
5.3.4	Dynamische Tragfähigkeit	55
6	Zubehör	
6.1	Befestigungs- und Verbindungselemente	
6.1.1	Befestigungsleisten	
6.1.2	Nutensteine	
6.1.3	Direktverbindung	
6.1.4	Kreuzverbindung	
6.1.5	Portalverbindung	
6.1.6	A - Standardverbindung	
6.1.7	Winkelverbindung	
6.2	Antriebsoptionen	
6.2.1	Steckwellen	
6.2.2	Kupplungen und Verbindungswellen	
6.2.3	Planetengetriebe / Motoradapter	
6.2.3.1	Formschlüssige Montage der Planetengetriebe	
6.2.3.2	Kraftschlüssige Planetengetriebemontage mit Kupplung und Kupplungsglocke	
6.3	Schalter	
6.3.1	Schaltervarianten	
6.3.2	Leitungsführung	
6.3.3	Anbauvarianten	
6.3.4	Technische Daten	
6.3.5	Kombinationsmöglichkeiten	
6.4	Energieketten	
6.5	Nutabdeckprofile	
6.6	Schmieranschlüsse	81
7.	Mehrachssysteme	82
7.1	Standard - Achssysteme	
7.1.1.	Standard - Achssystem A	
7.1.2	Standard – Achssystem B	
7.2	Dynamische Belastbarkeit von Standard – Achssysteme	
7.3	Endschalterkombinationen für Standard – Achssysteme	
		

8	Typenschlüssel85
9	Typenverzeichnis86
10	Passungen92
11	Anfragehilfe
12	Indexverzeichnis95

Grundlagen Linearachsen 1.

1.1 **Produkteigenschaften**

Mit den Linearachsen AXE hat NTN-SNR eine komplett neue Baureihe (Bild 1.1) von Standardachsen entwickelt.



Wichtigste Eigenschaften dieser Baureihe sind:

- Kurze Lieferzeiten
- Kostenoptimiertes Design
- Einzelachsen und Achssysteme inklusive Zubehör online konfigurierbar
- Leichte und steife Aluminiumprofile als Basis
- Optimaler Schutz der im Inneren des Profils angeordneten Führungselemente gegen Verschmutzungen und Beschädigungen
- Unverändert hohes Qualitätsniveau
- Optimale Wartungs- und Servicefreundlichkeit
- Individuelle Achskonfigurationen durch ein breites Spektrum an verfügbaren Verbindungselementen und Anbauteilen zur flexiblen Gestaltung von Ein- und Mehrachssystemen
- Schnelle Montage

Das Basisprofil nimmt die Führungsschienen der Linearführungen auf. Dabei sind die Führungsschienen mit dem Profil verschraubt (Bild 1.2). Das Basisprofil ist ein eloxiertes Aluminiumprofil, das die Steifigkeit einer Linearachse maßgeblich bestimmt.

Die Schlitteneinheit ist eine komplexe Baugruppe, die aus einem Aluminiumprofil oder Aluminiumbauteilen besteht und an der die Führungswagen des Führungssystems montiert sind. Über die Schlitteneinheit wird bei Linearachsen auch die Verbindung der Antriebselemente zum Führungssystem sichergestellt. An der Oberseite enthält die Schlitteneinheit Profilnuten (Bild 1.3) zur Befestigung der kundenseitigen Anbauten.

Bild 1.3 _____ Schlitteneinheit mit Profilnuten

Die Schlitteneinheiten enthalten die leicht zugänglichen Servicepunkte für die Schmierung der Führungselemente (Bild 1.4 bis 1.6)

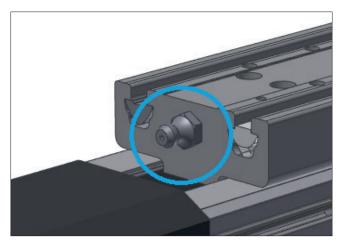


Bild 1.4 ____ Schlitteneinheit mit einer Schmierstelle stirnseitig

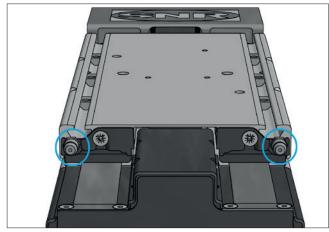


Bild 1.5 _____ Schlitteneinheit mit zwei Schmierstellen stirnseitig

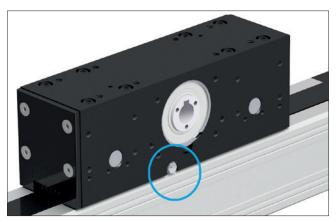


Bild 1.6 _____ Antriebskopf mit seitlichen Schmierstellen

1.2 Antriebssysteme

SNR – Linearachsen der Baureihe AXE werden mit Zahnriemenantrieb hergestellt.

Dadurch eignen sich die Linearachsen für schnelle Handlings- und Positionieraufgaben.

Alle Achsen sind mit AT - oder STD - Zahnriementriebe ausgerüstet. Es handelt sich hierbei um extrudierte Polyurethanriemen mit integrierten Stahlzugträgern. Die AT – Zahnriemen sind in der Null-Lücken-Form ausgeführt. Die Verwendung von schwarzen Zahnriemen verhindert eine Verfärbung der Zahnriemen unter UV - Strahlung.

Diese verwendeten Zahnriemen zeichnen sich weiterhin durch folgende Eigenschaften aus:

- Geringer Verschleiß
- Wartungsfrei
- Hohe Zugfestigkeit und geringe Dehnung
- Sehr hohe Genauigkeit Teilungsfehler ± 0,2mm/m
- UV resistent
- Temperaturbereich -25°C bis +75°C
- Geräuscharm

Die spezielle Gestaltung der Zahnriemenklemmung über Zahnsegmente (Bild 1.7) ermöglicht eine ungeschwächte Klemmung des Zahnriemens über die gesamte Breite.

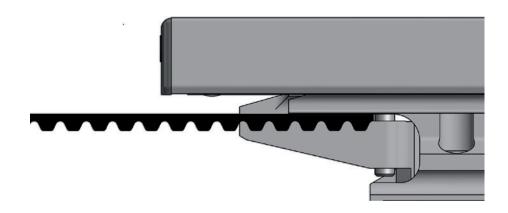
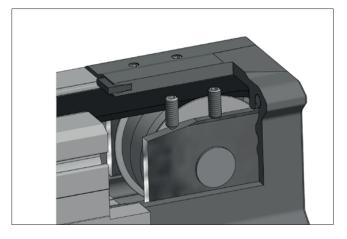



Bild 1.7 _____ Zahnriemenklemmung

Die Einstellung der Zahnriemenspannung wird in SNR – Linearachsen durch eine radial verschiebbare Lagerung der Umlenkscheibe im Umlenkkopf (Bild 1.8) vorgenommen.

Zur Einstellung der korrekten Riemenvorspannung wird die SNR - Messvorrichtung eingesetzt, bei der über einen Kraftsensor die exakte Riemenvorspannung eingestellt wird (Bild 1.9).

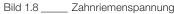


Bild 1.9 _____ Messvorrichtung zur Zahnriemenspannung

Damit besteht keine Gefahr der Überlastung des Zahnriemens oder des Ausfalls der Riemenscheibenlagerung durch zu hohe Zahnriemenvorspannung. Durch eine zentrierte Ausrichtung werden weiterhin optimale Laufeigenschaften und geringer Verschleiß sichergestellt.

Vorteile

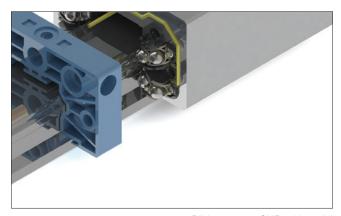
- Hohe Dynamik
- Große Längen realisierbar
- Kostengünstig
- Wartungsfreies Antriebselement

1.3 Führungssysteme

Die SNR - Linearachsen der Baureihe AXE sind mit Linearführungen mit integrierter Kugelkette ausgerüstet (Bild 1.10). Durch die Anordnung der Laufbahnen im 45° Winkel sind die SNR - Linearführungen universell einsetzbar und weisen gleiche Tragzahlen in allen Hauptlastrichtungen auf.

Zu den besonderen Eigenschaften von SNR - Linearführungen mit Kugelkette zählen die integrierten Schmierstoffreservoirs. Aus dem Einsatz dieser Linearführungen ergeben sich folgende Vorteile:

- Hohe Tragzahlen
- Hohe Lebensdauer
- Langzeitwartungsfrei
- Geringe Wärmeentwicklung
- Hohes Toleranzausgleichs- und Fehlerkompensatuionsvermögen durch X – Anordnung der Laufbahnen
- Niedriges Geräuschniveau
- Hohe Laufruhe
- Hohe Geschwindigkeiten bis 5 m/s
- Hohe Beschleunigungen bis 50 m/s²



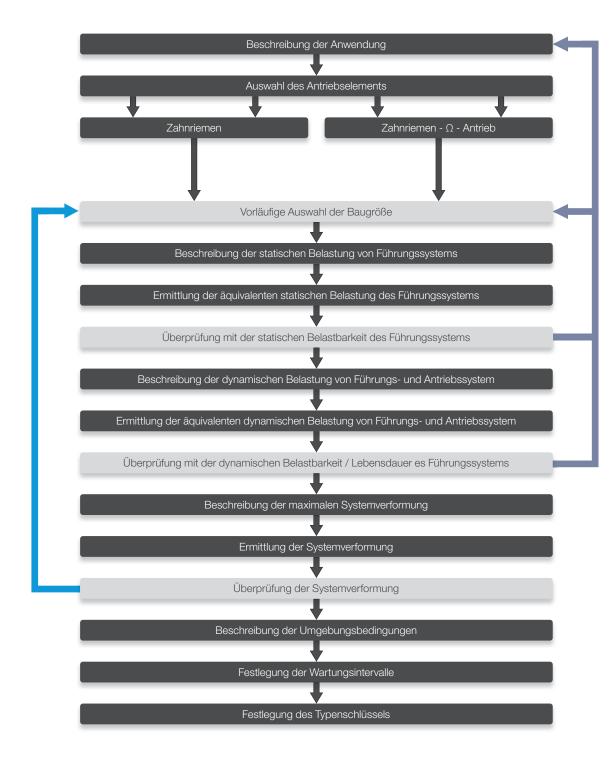


Bild 1.10 ____ SNR – Linearführung mit Kugelkette

Auswahlkriterien 1.4

2. Systemtechnologie

2.1 Definitionen

Linearachsen stellen einbaufertige Einheiten aus einer Kombination von präzisen Führungs- und Antriebselementen dar. Dadurch sind Linearachsen mit ihren Variationsmöglichkeiten kostengünstige und von den Abmessungen äußerst kompakte Bauelemente für Maschinen, mit denen Anlagen in kürzester Zeit montiert und in Betrieb genommen werden können.

Für die Auswahl der Linearachsen können nachfolgende Kriterien Grundlage sein:

WIEDERHOL- GENAUIGKEIT	Bei der Wiederholgenauigkeit wird ein beliebiger Punkt mehrfach aus einer Richtung vom gleichen Ausgangspunkt angefahren und die Abweichung zum Sollwert gemessen. Der Vorgang wird für verschiedene Punkte wiederholt. ± 50% der Differenz zwischen maximaler und minimaler Abweichung wird als Wiederholgenauigkeit angegeben.
POSITIONIER- GENAUIGKEIT	Bei Messung der Positioniergenauigkeit werden mehrere Punkte in einer Richtung angefahren und die Differenz zwischen Sollweg und tatsächlich zurückgelegtem Weg gemessen. Die Positioniergenauigkeit ist die absolute Maximaldifferenz.
LAUFPARALLELITÄT	Eine mittig auf der Schlitteneinheit montierte Messuhr wird über den gesamten Hub verfahren. Die Laufparallelität ist die maximale Differenz der Ablesewerte.

Für die Auswahl der SNR - Linearachsen stehen ebenfalls unsere Vertriebs- und Anwendungsingenieure mit langjährigen Erfahrungen zur Verfügung.

2.2 Einbauerklärung für eine unvollständige Maschine (Machinery directive 2006/42/EG)

Hiermit erklärt der Hersteller SNR WAELZLAGER GMBH, Friedrich-Hagemann-Straße 66, D-33719 Bielefeld, Germany der unvollständigen Maschinen der Produktfamilien "Linearachse AXE":

• Folgende grundlegende Sicherheits- und Gesundheitsschutzanforderungen nach Anhang I der Direktive 2006/42/EG sind angewandt und eingehalten:

Allgemeine Grundsätze:

- 1.1. Allgemeines
- 1.3. Schutzmaßnahmen gegen mechanische Gefährdungen
- 1.5. Risiken durch sonstige Gefährdungen
- 1.6. Instandhaltung
- 1.7. Informationen
- Die speziellen technischen Unterlagen nach Anhang VII B wurden erstellt.
- Wir werden der zuständigen Behörde ggf. die vorgenannten speziellen technischen Unterlagen in Form von speziellen technischen Unterlagen gemäß Anhang VII Teil B übermitteln.
- Die vorgenannten speziellen technischen Unterlagen können bei der Qualitätssicherungsabteilung, SNR Wälzlager GmbH, Friedrich-Hagemann-Straße 66, D-33719 Bielefeld angefordert werden.
- Die Konformität mit den Bestimmungen der EN ISO 12100: 2010 "Sicherheit von Maschinen Allgemeine Gestaltungsleitsätze
 Risikobeurteilung und Risikominderung"
- Die Inbetriebnahme ist so lange untersagt, bis festgestellt wurde, dass soweit zutreffend die Linearachse oder das Linearachssystem, die in eine unvollständige Maschine eingebaut werden soll, den Bestimmungen der der Maschinenrichtlinie 2006/42/EG entspricht.

i.V. Ulrich Gimpel (Industry Engineering Division Head) SNR WÄLZLAGER GMBH - Friedrich-Hagemann-Straße 66 D-33719 Bielefeld, Germany Bielefeld, Dezember 2019

2.3 Sicherheitshinweise

Das Gerät ist dem heutigen Stand der Technik und den geltenden Vorschriften entsprechend gebaut. Das Gerät entspricht der EU-Richtlinie Maschinen, den harmonisierten Normen, Europanormen oder den entsprechenden nationalen Normen. Dies wird

durch eine Herstellererklärung bestätigt.

Es gelten selbstverständlich einschlägige Unfallverhütungsvorschriften, allgemein anerkannte sicherheitstechnische Regeln, EU-Richtlinien, sonstige zutreffende Normen und länderspezifische Bestimmungen.

Da die Lineareinheiten in den unterschiedlichsten Bereichen eingesetzt werden können, geht die Verantwortlichkeit der spezifischen Anwendung mit dem Einsatz auf den Anwender über.

Von diesem Gerät gehen unvermeidbare Restgefahren für Personen und Sachwerte aus. Deshalb muss jede an diesem Gerät arbeitende Person, die mit dem Transport, Aufstellen, Bedienen, Warten und Reparieren des Gerätes zu tun hat, eingewiesen sein und die möglichen Gefahren kennen. Dazu muss die Informationen über Montage, Inbetriebnahme, Wartung und Schmierung verstanden sein und beachtet werden.

Weiterführend bestehen im Bereich der Antriebselemente Verletzungsgefahren durch rotierende oder andersartig bewegte Bauteile. Bei in Betrieb befindlicher Linearachse besteht insbesondere im Bereich der Endlagendämpfer und der Endschalter erhöhte Quetschgefahr durch den bewegten Schlitten.

Auf diese Restgefahren hat der Anwender durch Schilder oder schriftliche Verhaltensregeln hinzuweisen. Alternativ kann der Anwender diese Restgefahren durch geeignete konstruktive Maßnahmen beseitigen oder weitestgehend ausschließen.

Bei hohen Geschwindigkeiten, besonderen Applikationen und ggf. bei Aufsummierung mehrerer Geräuschquellen kann sich der Geräuschpegel erhöhen. Der Anwender muss entsprechende Schutzmaßnahmen treffen.

Die Inbetriebnahme der Lineareinheiten ist solange untersagt, bis sichergestellt wurde, dass die Maschine oder Anlage, in die sie eingebaut worden sind, den Bestimmungen der EU-Richtlinie Maschinen, den harmonisierten Normen, Europanormen oder den entsprechenden nationalen Normen entspricht.

2.4 Bestimmungsgemäße Verwendung

Grundsätzlich sind SNR - Linearachsen für lineare Bewegung, wie sie beim Positionieren, Takten, Transportieren, Palettieren, Beladen, Entladen, Klemmen, Spannen, Prüfen, Messen, Hantieren und Manipulieren von Werkstücken oder Werkzeugen vorkommen, vorgesehen. Hierbei sind die typenspezifischen Belastungsdaten aus den jeweiligen Katalogunterlagen bzw. ergänzenden technischen Berechnungen von NTN-SNR zu berücksichtigen.

Weiterhin ist eine Betriebstemperatur von −10° C bis +75° C einzuhalten.

Eine andere oder darüber hinausgehende Verwendung gilt als nicht bestimmungsgemäß. Für hieraus resultierende Schäden haftet der Hersteller nicht. Das Risiko trägt allein der Anwender. Die Linearachse darf nur von Personen betrieben und gewartet werden, die hiermit vertraut und über die Gefahren unterrichtet

In besonderen Anwendungsfällen (z.B. Lebensmittelindustrie, Reinraum usw.) müssen vom Anwender besondere Vorkehrungen getroffen werden, die von den Standardausführungen abweichen.

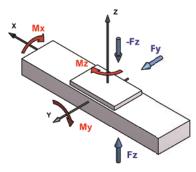
2.5 Koordinatensystem

Die Linearachsen können mit Kräften und / oder Momenten belastet werden. Das Koordinatensystem (Bild 2.1) zeigt die wirkenden Kräfte in den Hauptlastrichtungen, die Momente sowie auch die sechs Freiheitsgrade.

Kräfte in Hauptlastrichtungen:

F_x Vorschubkraft (X-Richtung) F_Y Tangentiale Belastung (Y-Richtung)

F_Z Radiale Belastung (Z-Richtung)


Momente:

M_x Rotation um die X-Achse (Rollen)

M_Y Rotation um die Y-Achse (Nicken)

M_Z Rotation um die Z-Achse (Gieren)

Koordinatensystem

2.6 Statische Belastbarkeit

Die in den Datentabellen angegebenen Werte der statischen Belastbarkeit der Linearachsen stellen die maximal mögliche Last dar, die aufgebracht werden kann.

Die Belastungen (radiale und tangentiale) sowie Momentenbelastungen können gleichzeitig aus verschiedenen Richtungen auf die Linearachse wirken (Bild 2.2).

In diesem Fall wird eine maximale äquivalente Belastung, die sich aus radialen, tangentialen und anderen Belastungen zusammensetzt, für die Überprüfung eingesetzt. Hierzu muss die Stelle im Bewegungszyklus lokalisiert werden, in der das Zusammenwirken aller Belastungen den Maximalwert hat.

Bei komplexen Belastungen empfehlen wir, den Kontakt zu unseren NTN-SNR – Anwendungsingenieuren aufzunehmen.

Ein minimaler Sicherheitsfaktor für die statische Belastbarkeit ist hier nicht vorgegeben.

Die statische Belastbarkeit darf nicht mit der statischen Sicherheit verwechselt werden, die bei Auslegungen von Linearführungen angegeben wird.

Die statische Belastbarkeit einer Linearachse resultiert aus der maximalen Belastbarkeit aller verbundenen Bauteile in deren Zusammenwirken und ist geringer als die statische Tragzahl des Führungssystems.

Eine zusätzliche Überprüfung der statischen Sicherheit des Führungssystems ist nicht erforderlich.

Sind Linearachsen im Betrieb statischen Wechselbeanspruchungen ausgesetzt, sind hier die Werte der dynamischen Belastbarkeit als Maximalwerte anzusetzen

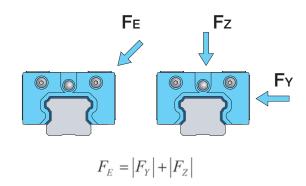


Bild 2.2 ____ Äquivalente Belastung

2.7 Lebensdauer

2.7.1. Dynamische Belastbarkeit / nominelle Lebensdauer

Die Katalogangaben der dynamischen Belastbarkeit der Linearachsen AXE beruhen auf der nominellen Lebensdauer von 50.000 km. Die Veränderung der nominellen Lebensdauer in Abhängigkeit der Belastung ist in Bild 2.3 dargestellt.

Liegen die Belastungen unter den beschriebenen Grenzwerten, ist keine weitere Überprüfung notwendig.

Soll die nominelle Lebensdauer der Linearachse berechnet werden, sind die Grundlagen für die Berechnungen von Linearführungen anzuwenden, die in dem entsprechenden Katalog beschrieben sind

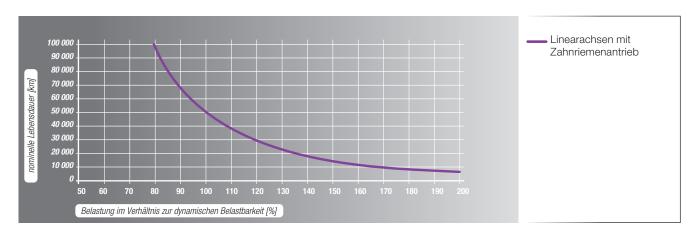


Bild 2.3 _____ Nominelle Lebensdauer

Wenden Sie sich bitte bei höheren dynamischen Lasten an unsere NTN-SNR – Anwendungsingenieure oder nutzen Sie bei komplexen Belastungen unseren Berechnungsservice.

2.7.2. Einflussfaktoren

Für eine Berechnung der nominellen Lebensdauer ist es oft sehr schwer, die wirkende Belastung exakt zu bestimmen.

Die Linearachsen werden in der Regel den Schwingungen bzw. Vibrationen, die durch die Prozess- oder Antriebskräfte entstehen, ausgesetzt. Linearachsen sind so zu dimensionieren, dass die Lastspitzen von Stößen die maximal zulässigen Belastungen nicht überschreiten.

Das betrifft den dynamischen sowie den statischen Betriebszustand des Gesamtsystems.

2.8 **Steifigkeit**

Die Steifigkeit einer Linearachse wird über den Zusammenhang zwischen der äußeren Belastung und der daraus resultierenden elastischen Verformung in Belastungsrichtung definiert.

Die Steifigkeit ist ein wichtiger Parameter bei der Auswahl der Linearachse, da je nach Typ und Ausführung die SNR - Linearachsen unterschiedliche Steifigkeitswerte haben. Im Wesentlichen wird die Steifigkeit der Linearachse durch die Steifigkeit des Aluminiumprofils bestimmt.

Die Gesamtverformung eines Systems hängt noch von folgenden äußeren Faktoren ab:

- Art der Belastung (Punkt-, Strecken- oder Momentenbelastung)
- Art der Befestigung der Linearachse
- Länge der Linearachse
- Abstand der Befestigungspunkte

Einige Beispiele für die Berechnung der Durchbiegung von Linearachsen sind in Tabelle 2.1 dargestellt.

Tabelle 2.1 __ Beispiele Durchbiegung von Linearachsen

Auflagerart	Spezifikation	Durchbiegung	Biegewinkel
Loslager - Loslager	P a ₂	$\delta_{\text{max}} = \frac{Pl^3}{48EI}$	$\alpha_1 = 0$ $\tan \alpha_2 = \frac{Pl^2}{16EI}$
Festlager - Festlager	₩ E E V V	$\delta_{\text{max}} = \frac{Pl^3}{192EI}$	$\alpha_1 = 0$ $\alpha_2 = 0$
Loslager - Loslager	XE US OF THE STATE	$\delta_{\text{max}} = \frac{5pl^4}{384EI}$	$\tan \alpha_2 = \frac{pl^3}{24EI}$
Festlager - Festlager	© Day K	$\delta_{\text{max}} = \frac{pl^4}{384EI}$	$\alpha_2 = 0$
Festlager - Frei	P xe go	$\delta_{\text{max}} = \frac{Pl^3}{3EI}$	$\tan \alpha_1 = \frac{Pl^2}{2EI}$ $\alpha_2 = 0$
Festlager - Frei	e Quax	$\delta_{\text{max}} = \frac{pl^4}{8EI}$	$\tan \alpha_1 = \frac{pl^3}{6EI}$ $\alpha_2 = 0$
Loslager - Loslager	WZ M AZ XEE SO	$\delta_{\text{max}} = \frac{\sqrt{3}Ml^2}{216EI}$	$\tan \alpha_1 = \frac{Ml}{12EI}$ $\tan \alpha_2 = \frac{Ml}{24EI}$
Festlager - Festlager	W W W W W W W W W W W W W W W W W W W	$\delta_{\text{max}} = \frac{Ml^2}{216EI}$	$\tan \alpha_1 = \frac{Ml}{16EI}$ $\tan \alpha_2 = 0$

2.9 **Dynamische Betriebslast**

Bei Linearachsen mit Zahnriemenantrieb ist die vorhandene dynamische Betriebslast zu ermitteln und mit der zulässigen dynamischen Betriebslast zu vergleichen.

Die dynamische Betriebslast wird nach der Formel [2.2] ermittelt.

 $F_{zdyn} = \frac{T_0*2\pi}{P} + m*a + m*g*\sin\alpha$

vorhandene dynamische Betriebslast [N]

Leerlaufdrehmoment [Nm] T₀ Vorschubkonstante [m]

bewegte Masse [kg] m Beschleunigung [ms-2] а

Gravitationskonstante [9,81 ms⁻²]

Einbaulage [°]

 $F_{z\,dyn\,0} \ge F_{z\,dyn}$ [2.3]

 $F_{z\,dyn\,0}$ zulässige dynamische Betriebslast [N] vorhandene dynamische Betriebslast [N]

2.10 **Präzision**

Die Laufparallelität von Linearachsen wird hauptsächlich durch die Toleranzen der verwendeten Aluminiumprofile bestimmt. Die von uns verwendeten Profile erfüllen mindestens die Anforderungen der EN12020-2 für Präzisionsprofile.

Die häufigste Anforderung in Anwendungen von Linearachsen ist die Wiederholgenauigkeit. Diese Werte sind in den Datentabellen für alle SNR - Linearachsen angegeben.

Für weitere Informationen stehen Ihnen unsere NTN-SNR Anwendungsingenieure zur Verfügung.

Getriebeauswahl 2.11

Bei der Auswahl des Getriebes für eine Linearachse ist folgendes zu berücksichtigen:

- Maximale Betriebsdrehzahl
- Maximales Beschleunigungsmoment
- Nenndrehmoment am Abtrieb

Diese Parameter berücksichtigen die mechanischen und thermischen Grenzen des Getriebes und sind Herstellerangaben, die nicht überschritten werden dürfen.

2.11.1. **Maximale Betriebsdrehzahl**

$$n = \frac{v * 60}{P}$$

vorhandene Betriebsdrehzahl [min-1]

Geschwindigkeit [ms-1]

Р Vorschubkonstante [m]

$$n_{\text{max}} \ge n$$
 [2.5]

maximale zulässige Betriebsdrehzahl [min-1] n _{max} vorhandene Betriebsdrehzahl [min-1]

2.11.2. **Maximales Beschleunigungsmoment**

$$T_{\text{max}} = T_0 + \frac{m^* a^* P}{2\pi} + \frac{m^* g^* \sin \alpha^* P}{2\pi}$$
 [2.6]

vorhandenes Beschleunigungsmoment [Nm]

Leerlaufdrehmoment [Nm] T_0 PVorschubkonstante [m]

bewegte Masse [kg] m Beschleunigung [ms-2] а

Gravitationskonstante [9,81 ms⁻²] g

Einbaulage [°]

$$T_{a\,{
m max}} \ge T_{
m max}$$
 [2.7]

maximal zulässiges Beschleunigungsmoment [Nm] vorhandenes Beschleunigungsmoment [Nm]

Nenndrehmoment am Antrieb 2.11.3.

$$T = T_0 + \frac{m * g * \sin \alpha * P}{2\pi}$$
 [2.8]

vorhandenes Drehmoment am Abtrieb [Nm]

 $\begin{array}{c} T_0 \\ P \end{array}$ Leerlaufdrehmoment [Nm] Vorschubkonstante [m]

m bewegte Masse [kg] Gravitationskonstante [9,81 ms⁻²] g

Einbaulage [°]

$$T_a \ge T$$
 [2.9]

zulässiges Nenndrehmoment am Abtrieb [Nm] vorhandenes Drehmoment am Abtrieb [Nm]

Antriebsauslegung 2.12

Berechnungen von Antrieben sind ausschließlich durch die jeweiligen Antriebshersteller durchzuführen. Der Grund dafür liegt darin, dass NTN-SNR nicht über die erforderlichen Berechnungstools und Basisdaten dieser Antriebe verfügt.

Auswahl von Linearachsen mit Zahnriemenantrieb für um 90° gekippte Montage 2.13 (Wandmontage)

Bei Linearachsen mit Zahnriemenantrieb in 90° gekippter Anordnung (Wandmontage) kann sich der Zahnriemen während des Betriebs durch die Schwerkraft an die untere Bordscheiben verlagern. Aus diesem Grund empfehlen wir die, in Tabelle 2.2 angegebenen, Hub - Grenzlängen nicht zu überschreiten.

Tabelle 2.2 __ Hub-Grenzlängen von Linearachsen mit Zahnriemenantrieb bei Wandmontage

Тур	Hub - Grenzlänge [mm]
AXE60Z	2 000
AXE80Z	2 500
AXE100Z	3 000
AXE110Z	2 000
AXE160Z	2 500

Weiterhin ist, der zentrierte Lauf des Zahnriemens zusammen mit der in Kapitel 4.7 spezifizierten Wartung der Linearachsen zu überprüfen

3. Montage und Inbetriebnahme

3.1 **Transport und Lagerung**

SNR - Linearachsen sind hoch präzise Bauteile. Heftige Stöße können die Mechanik der Linearachsen beschädigen und ihre Funktion beeinträchtigen. Um Schäden bei Transport und Lagerung zu vermeiden, sind folgende Punkte zu beachten:

- Schutz vor starken Erschütterungen bzw. Stößen, aggressiven Medien, Feuchtigkeit und Schmutz.
- Beim Transport in ausreichend großer Verpackung unterbringen und gegen Verrutschen sichern.
- Linearachsen können größere Gewichte haben und scharfe Kanten aufweisen. Der Transport darf nur durch qualifiziertes Personal mit entsprechender Schutzausrüstung (Sicherheitsschuhe, Handschuhe,...) erfolgen.
- Linearachsen und Verpackungen mit Linearachsen können größere Längen aufweisen. Die Achsen und deren Verpackungen sind beim Transport an mindestens zwei Stellen, bei Längen ab 3 m an drei Stellen aufzunehmen, um eine übermäßige Durchbiegung zu verhindern.

3.2 Gestaltung Montageflächen / Montagetoleranzen

Jede Abweichung der Ebenheit, Geradheit und Parallelität von Linearachsen oder montierten Achssystemen führt zu Verspannungen, die zusätzliche Belastungen der Führungselemente verursachen und die Lebensdauer verringern. Grundsätzlich gilt: Je höher Belastung und Laufleistung, desto höher sind die Anforderungen an die Montage und Ausrichtung der Linearachse oder des Achssystems.

Für eine einwandfreie Funktion von Einzelachsen oder Achssystemen ist die Geradheit in Längsrichtung durch die Ausrichtung der Einzelachsen entsprechend Tabelle 3.1 zu gewährleisten:

Tabelle 3.1 __ Geradheitstoleranz für Montage von Linearachsen

Baugröße	Geradheitstoleranz nach Montage / pro Meter [mm]
alle	0,5

Bei parallelen Linearachsen ist die zulässige Toleranz in der Ebenheit (Verwindung) und der Durchbiegung in Längsrichtung zusätzlich abhängig von der Torsionssteifigkeit der Y - Achse oder der Quertraverse. Die hieraus resultierenden Momentenbelastungen (My) dürfen die Katalogwerte (abzüglich Lastmoment) nicht überschreiten.

Zu beachten ist, dass gleichzeitige Abweichungen in Geradheit (Tabelle 3.1), Ebenheit, Durchbiegung und Parallelität (Toleranzen eo und e₁ Tabelle 3.2) zu einer Addition der Belastungen auf das Führungssystem führen und anteilig berücksichtigt werden müssen.

Sollen die Tische parallel montierter Linearachsen steif verbunden werden, sind weitere Anforderungen an die Beschaffenheit der Montageflächen zu berücksichtigen. Für eine parallele Montage sind hauptsächlich die Linearachsen AXE60, AXE80 und AXE100

Ist die parallele Montage von Linearachsen anderer Baugrößen vorgesehen, wenden Sie sich bitte zur Auswahl an unsere NTN-SNR - Anwendungsingenieure.

Die Montageflächen der Linearachsen, wie auch die für die der Quertraverse sollten im Montagebereich in einer Aufspannung bearbeitet werden oder justierbar sein. Dabei sind für die Geradheit der Montageflächen quer zur Bewegungsrichtung die Basistoleranzen e_0 und die Parallelitätstoleranzen e_1 der Linearachsen aus Tabelle 3.2 anzustreben (Bild 3.1).

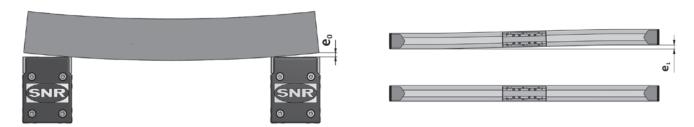


Bild 3.1 _____ Toleranzen von parallelen Linearachsen

Tabelle 3.2 __ Montagetoleranzen von parallelen Linearachsen

Тур	Basistoleranz e ₀ für Traversen [mm]	Basistoleranz e ₀ für Standard – Achs – Systeme ¹ [mm]	Parallelitätstoleranz e₁ [mm]
AXE60	0,010	0,300	0,018
AXE80	0,010	0,300	0,020
AXE100	0,020		0,022

^{1 -} s. Kapitel 7

Ist eine Bearbeitung der Montageflächen nach o.g. Anforderung nicht vorgesehen oder wird dieser Wert durch die Durchbiegung der Traverse überschritten, ist eine Kontrolle der Parallelität vorzunehmen und ggfs. eine Korrektur durchzuführen.

Das Diagramm in Bild 3.2 zeigt den Zusammenhang der Montagetoleranzen mit der möglichen dynamischen Belastbarkeit.

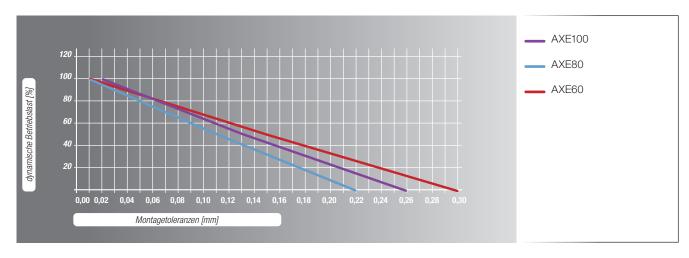


Bild 3.2 _____ dynamische Belastbarkeiten der Linearachsen in Abhängigkeit von der Montagetoleranzen

3.3 Montageanleitung

Bei der Montage der Linearachse (unvollständige Maschine) müssen unten aufgeführte Bedingungen erfüllt sein, damit sie ordnungsgemäß und ohne Beeinträchtigung der Sicherheit und Gesundheit des Personals mit anderen Teilen zu einer vollständigen Maschine zusammengebaut werden kann.

Achtung! Das Motorgehäuse kann im Betrieb hohe Temperaturen erreichen.

Die Linearachse ist so anzubringen, dass eine Körperschallübertragung minimiert wird. Weitere Maschinenteile sollten so ausgelegt werden, dass sie nicht im Resonanzbereich der Linearachse liegen.

SNR - Linearachsen der Baureihe AXE können durch Nutensteine oder Befestigungsleisten auf ebenen Flächen oder anderen Linearachsen aus dem AXE-Programm befestigt werden. Die Anzahl der Befestigungspunkte muss auf die Anwendung abgestimmt werden.

Die Befestigungsleisten werden seitlich am Linearachsprofil eingehakt und ermöglichen dank ihrer speziellen Formgebung eine einfache Montage durch eine Verschraubung von oben (Bild 3.3).

Die Befestigungsleisten können innerhalb der gesamten Profillänge frei positioniert werden.

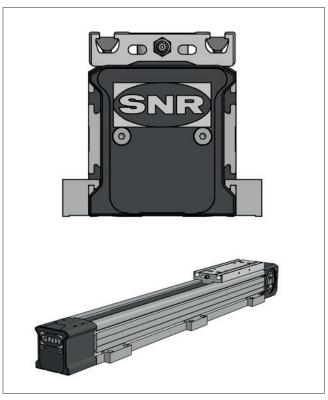


Bild 3.3 ____ Befestigungsleisten AXE

Alternativ können Linearachsen auch über einschwenkbare Nutensteine befestigt werden, die ebenfalls über die gesamte Profilänge frei positioniert werden können (Bild 3.4).

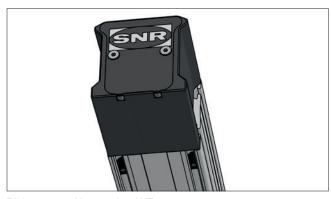


Bild 3.4 ____ Nutensteine AXE

Grundsätzlich ist bei allen Befestigungsarten die Anzahl der Befestigungspunkte auf die Anwendung abzustimmen. Bei punktueller Auflage ist darauf zu achten, dass die entstehende Durchbiegung weder die Funktion noch die geforderte Genauigkeit beeinträchtigt.

3.4 Montage von parallelen Linearachsen

Grundsätzlich empfehlen wir parallele Linearachsen mit Hilfe einer montierten Quertraverse auszurichten. Dieses ist die einzig sichere Methode, Verspannungen und damit Beeinträchtigungen der Laufleistung auf ein Minimum zu reduzieren. Die Montage ist entsprechend nachfolgender Schritte durchzuführen:

- 1. Erste Linearachse (Antriebsachse) gerade ausrichten und komplett montieren.
- 2. Zweite Linearachse parallel und die Enden fluchtend ausrichten und nur leicht, für die Prüfung unter Punkt 6, anziehen.
- 3. Tische in eine Endlage schieben.
- 4. Traverse (oder Querachse) auflegen.
- 5. Bei zu erwartender relevanter Durchbiegung, Last aufbringen oder simulieren.
- 6. Basistoleranz e₀ (Kapitel 3.2) mit Fühlerlehre prüfen. Ggfs. Folienbleche unterlegen oder Winkellage der Linearachsen korrigieren.
- 7. Traverse (oder Querachse) ausrichten und befestigen.
- 8. Befestigungsschrauben der parallelen Linearachse lösen, so dass eine leichte Verschiebung möglich ist.
- 9. Den Tisch an die jeweilige Montageposition fahren und Schrauben anziehen. Mit den Endlagen beginnen.
- 10. Abschließend Verbindung an den Tischen noch einmal komplett lösen und wieder anziehen

3.5 **Anzugsmomente**

Für alle nachfolgend beschriebenen Montagen sind die Anzugsmomente der Schrauben in Tabelle 3.3 und 3.4 zusammengefasst.

Tabelle 3.3 __ Anzugsmomente der Kupplungsnaben

Tun	Anzugsmoment					
Тур	Klemmnabe Kupplung [Nm]	Getriebe [Nm]	Getriebeflansch [Nm]			
AXE40A	1,34	2,06	0,98			
AXE60A AXE60Z	10,00	6,86	4,41			
AXE80Z	10,00	6,86	4,41			
AXE100Z	25,00	33,3	14,70			
AXE110Z	10,00	6,86	4,41			
AXE160Z	10,00	6,86	4,41			

Tabelle _____ 3.4 Anzugsmomente für Motormontage

Tim	Wellendurchmesser	Spannschraube		
Тур	[mm]	Schlüsselweite [Nm]	Anzugsmoment [Nm]	
AXE40A	alle	3	2,0	
AXE60A	≤ 14	3	4,5	
AXE60Z	19	4	9,5	
AXE80Z	alle	4	9,5	
AXE100Z	alle	5	16,5	
AXE110Z	≤ 14	3	4,5	
AVELLA	19	4	9,5	
AXE160Z	alle	4	9,5	

3.6 Formschlüssige Montage von Planetengetrieben

Bei der formschlüssigen Montage von Planetengetrieben an Linearachsen mit Zahnriemenantrieb ist entsprechend nachfolgender Schritte (Bild 3.5) vorzugehen. Dabei sind die Anzugsmomente aus Tabelle 3.3, Kapitel 3.5 zu berücksichtigen.

- Adapterflansch 2 an das Planetengetriebe
 aufsetzen und die Befestigungsschrauben
 festziehen.
- 2. Getriebewelle mit der Passfeder in die Hohlwelle **6** der Linearachse einstecken. Sollte das nicht leichtgängig möglich sein, die Getriebewelle mittels einer Gewindestange und Unterlegscheibe in die Hohlwelle ziehen. Die Unterlegscheiben **5** (wenn vorhanden) auf den Adapterflansch auflegen und diesen mittels der Schrauben **4** mit dem Antriebskopf verschrauben.

Bild 3.5 _____ Formschlüssige Getriebemontage an Linearachsen mit Zahnriemenantrieb

3.7 Kraftschlüssige Montage von Kupplungen

Die kraftschlüssige Kupplungsmontage an Linearachsen mit Zahnriemenantrieb erfolgt entsprechend nachfolgender Schritte (Bild 3.6). Dabei die Anzugsmomente aus Tabelle 3.3, Kapitel 3.5 berücksichtigen.

- 1. Die Kupplungsnabe 1 mit Passfeder 2 in der Hohlwelle der Linearachse einstecken.
- 2. Kupplung mittels der Befestigungsschrauben 3 mit der Hohlwelle verschrauben.
- 3. Elastomer Zahnkranz 4 einsetzen.

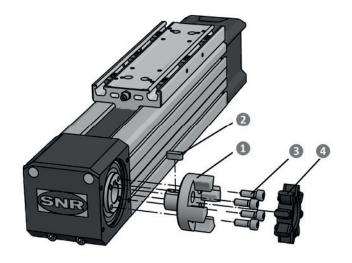


Bild 3.6 ____ Kraftschlüssige Kupplungsmontage an Linearachsen mit Zahnriemenantrieb

3.8 Montage von Planetengetrieben über Kupplung und Kupplungsglocke

Zur Montage von Planetengetrieben über Kupplung und Kupplungsglocke Linearachsen mit Zahnriemenantrieb ist entsprechend nachfolgender Schritte (Bild 3.7) vorzugehen. Dabei die Anzugsmomente aus Tabelle 3.3, Kapitel 3.5 berücksichtigen.

- 1. Die Kupplungsnabe 2 auf die Getriebewelle 1 stecken und mit der Spannschraube 3 festziehen.
- 2. Planetengetriebe 1 auf die Kupplungsglocke 4 aufsetzen und mittels der Befestigungsschrauben 5 verschrauben.
- 3. Diese Baugruppe auf die, mit dem Antriebskopf 6 verschraubte, Kupplungshälfte mit Elastomer Zahnkranz aufstecken und mit den Schrauben 7 befestigen. Dabei die Maße LK und L2 (Bild 3.8) aus Tabelle 6.20 in Kapitel 6.2.3.2 berücksichtigen.

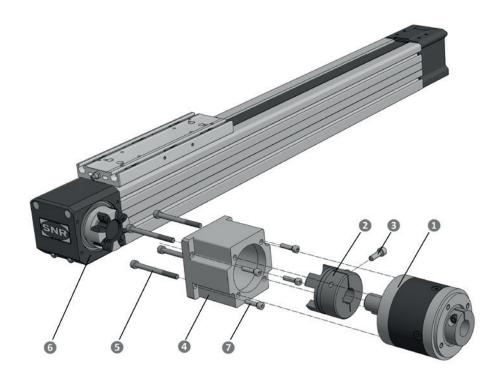


Bild 3.7 _____ Montage von Planetengetrieben über Kupplung und Kupplungsglocke

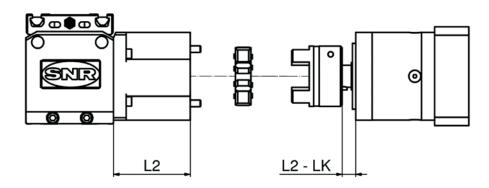


Bild 3.8 ____ Montagemaße

3.9 Montage Getriebeflansch

Für unterschiedliche Abmessungen der Motorflansche stehen verschiedene Getriebeflansche für die Planetengetrieben zur Verfügung. Bei der Montage der Getriebeflansche ist entsprechend nachfolgender Schritte (Bild 3.9) vorzugehen, unabhängig davon ob das Getriebe formschlüssig mit der Linearachse verbunden ist oder über Kupplung und Kupplungsglocke montiert wurde. Dabei die Anzugsmomente aus Tabelle 3.3, Kapitel 3.5 berücksichtigen.

- 1. Getriebeflansch **2** auf das Planetengetriebe **1** aufsetzen.
- 2. Befestigungsschrauben 3 montieren.

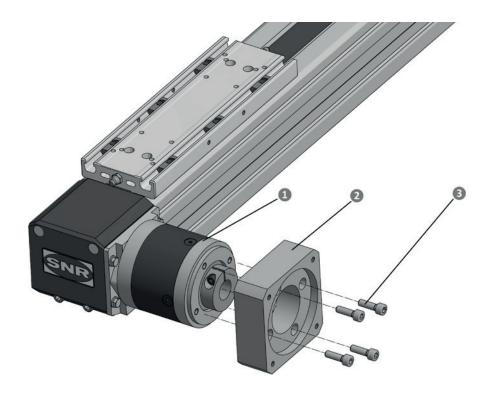


Bild 3.9 ____ Montage Getriebeflansch

3.10 Motormontage

Die Motormontage an Linearachsen mit Zahnriemenantrieb und Planetengetriebe hat in nachfolgenden Schritten entsprechend Bild 3.10 zu erfolgen. Dabei die Anzugsmomente aus Tabelle 3.4, Kapitel 3.5 berücksichtigen.

- Linearachse 1 seitlich lagern, so dass der Motoranbauflansch 2 nach oben zeigt.
- 2. Motorwelle, Bohrung der Hohlwelle und Distanzhülse entfetten.
- Schlitten 3 verschieben bis die Spannschraube in der Zugangsbohrung 4 sichtbar wird.
- 4. Wenn für den Motorwellendurchmesser eine Distanzhülse notwendig ist, diese in die Getriebebohrung einsetzen. Dabei ist darauf zu achten, dass der Schlitz der Distanzhülse um 90° versetzt zur Spannschraube liegt.
- 5. Motor einsetzen **5**.
- 7. Befestigungsschrauben eindrehen **6** und anziehen.
- 6. Spannschraube mit dem erforderlichen Anzugsmoment entsprechend anziehen.
- 8. Bohrung im Motoranbauflansch 2 mit beiliegendem Stopfen verschließen.

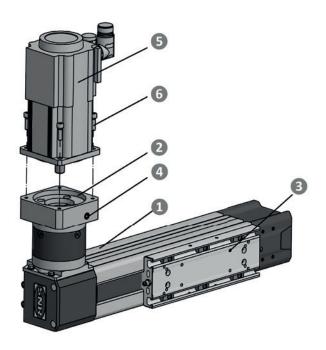


Bild 3.10 ____ Motormontage an Linearachsen Planetengetriebe

3.11 Montage von Verbindungswellen paralleler Linearachsen

Die Montage von Verbindungswellen paralleler Linearachsen mit Zahnriemenantrieb und hat in nachfolgenden Schritten entsprechend Bild 3.11 zu erfolgen. Dabei die Anzugsmomente aus Tabelle 3.3, Kapitel 3.5 berücksichtigen.

- 1. Montage der Linearachsen entsprechend der Angaben in Kapitel 3.2 und 3.4.
- 2. Die Kupplungsnaben 1 entsprechend der Beschreibung in Kapitel 3.7 montieren.
- Beim Einsatz paralleler Linearachsen mit Verbindungswelle kommen Kupplungen mit Halbschalenklemmnaben 2/5 zum Einsatz.
- 4. Die Schlitteneinheiten 4 beider Linearachsen in eine Endlage schieben.
- Jeweils eine Hälfte Halbschalenklemmnaben
 in die Elastomer Zahnkränze einstecken.
- 6. Die Verbindungswelle 3 auflegen, die zweite Hälfte der Halbschalenklemmnaben einsetzen 5 und festschrauben. Die Halbschalenkupplungen ermöglichen einen nachträglichen Ein- und Ausbau der Verbindungswelle ohne Demontage der Linearachsen.

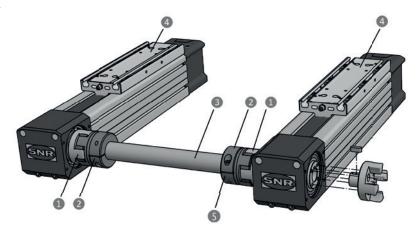


Bild 3.11 ____ Montage von Parallelen Linearachsen mit Verbindungswelle

3.12 Montage von Endschaltern

Linearachsen der Baureihe AXE können je nach Ausführung mit mechanischen Endschaltern oder mit induktiven Näherungsschaltern ausgerüstet werden.

Die jeweiligen Endschalter und das Betätigungselement (Kapitel 6.3.5) werden mit der angegebenen ID – Nummer als kompletter Montagesatz inklusive aller Schrauben und Befestigungselemente zur Verfügung gestellt.

In den nachfolgenden Kapiteln wird die Montage der Endschalter für die verschiedenen Antriebsvarianten beschrieben.

3.12.1. Montage von Endschaltern für Linearachsen AXE Z (außer AXE110Z)

Die Montage der Endschalter und des Betätigungselements hat in nachfolgenden Schritten entsprechend Bild 3.12 zu erfolgen. Der Tisch 10 und das Profil 20 der Linearachsen sind dabei symmetrisch aufgebaut, so dass die Montage auf beiden Seiten möglich ist.

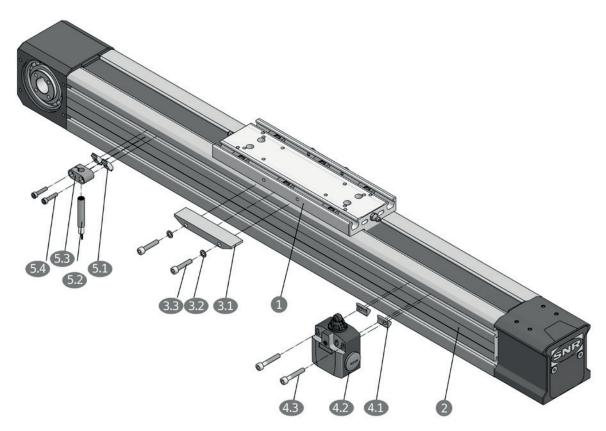


Bild 3.12 ____ Montage von Endschaltern an Linearachsen AXE_Z

Betätigungselement

Die Unterlegscheiben 3.2 auf die Schrauben 3.3 aufsetzen und das Betätigungselement 3.1 der Endschalter mit dem Tisch 1 verschrauben. Es ist darauf zu achten, dass die Schrägen des Betätigungselements nach unten zeigen.

Mechanische Endschalter

Die Nutensteine 4.1 in die obere seitliche Nut des Profils 2 einschwenken. Die Endschalter 4.2 mit den Schrauben 4.3 an den Nutensteinen die gewünschte Schaltposition schieben und befestigen.

Induktive Näherungsschalter (außer AXE160Z)

Den Halter des Endschalters 5.3 mit den Schrauben 5.4 leicht mit den Nutensteinen 5.1 verschrauben. Die Nutensteine 5.1 in die obere seitliche Nut des Profils 2 einsetzen und die Schrauben 5.4 soweit anziehen, bis sich die Nutsteine 5.1 in die Nut eindrehen. Den induktiven Näherungsschalter 5.2 von unten in den Halter 5.3 einsetzen und auf einen Abstand zum Betätigungselement 3.3 von maximal 1,2 mm einstellen und die Schrauben 5.4 festziehen.

Bei der Linearachse AXE160Z werden die induktiven Näherungsschalter auf der Profiloberseite montiert. Die Montage erfolgt wie bei der Linearachse AXE110Z und wird im Kapitel 3.12.3 beschrieben.

3.12.2. Montage von induktiven Näherungsschaltern zum Nuteinbau an Linearachsen AXE60Z, AXE80Z und AXE100Z

Alternative, zu den in Kapitel 3.12.1 beschriebenen Endschaltern, können die Linearachsen AXE60, AXE80 und AXE100 auch mit induktiven Näherungsschaltern für den Nuteinbau ausgerüstet werden. Die Montage der Schalter und des Betätigungselements hat in nachfolgenden Schritten entsprechend Bild 3.13 zu erfolgen. Auch für diese Schaltervariante sind Tisch 1 und das Profil 2 der Linearachsen symmetrisch aufgebaut, so dass die Montage auf beiden Seiten möglich ist.



Bild 3.13 ____ Montage von induktiven Näherungsschaltern zum Nuteinbau

Betätigungselement

Die Schrauben 3.3 durch die Bohrungen des Betätigungselements 3.2 stecken, die Unterlegscheiben 3.1 auf die Schrauben aufsetzen und die Einheit mit den seitlichen Gewindebohrungen des Tischs 1 verschrauben.

Induktive Näherungsschalter zum Nuteinbau

Die Schalter 4.1 von der Umlenkseite in die obere Nut des Profils 2 einschieben oder einschwenken. Es ist dabei darauf zu achten, dass die Leitungsführung des antriebsseitigen Endschalters wie in Kapitel 6.3.2 dargestellt, erfolgt. Die Schalter nach dem Positionieren mittels der Gewindestifte 4.2 festschrauben. Eine Justierung des Schaltabstandes ist nicht notwendig. Bei AXE80 und 100 sollte die Nut zur sicheren Leitungsführung durch ein Abdeckprofil verschlossen werden. Das Abdeckprofil gehört nicht zum Schaltersatz und muss separat bestellt werden (ID-Nummer 101841, Kapitel 6.5).

3.12.3. Montage von Schaltern für Linearachsen AXE110Z und Näherungsschaltern für AXE160Z

Die Montage der Schalter und des Betätigungselements hat in nachfolgenden Schritten entsprechend Bild 3.14 zu erfolgen. Der Tisch 1, der Antriebskopf 2.2 und der Umlenkkopf 2.3 der Linearachsen sind dabei symmetrisch aufgebaut, so dass die Montage auf beiden Seiten möglich ist.

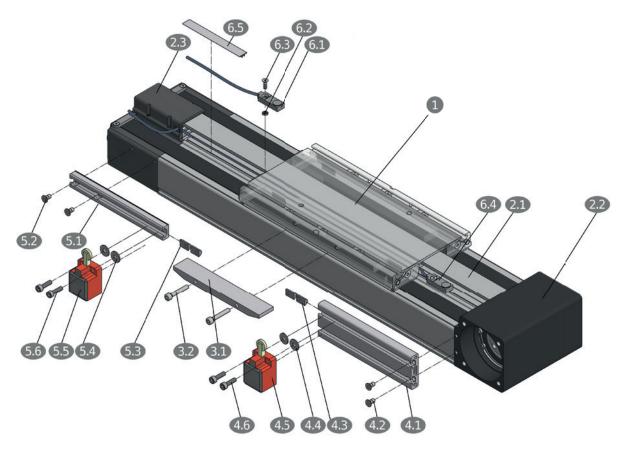


Bild 3.14 ____ Montage von Endschaltern an Linearachsen AXE110Z

Betätigungselement

Die Schraube **3.2** durch die Bohrungen des Betätigungselements **3.1** stecken und die Einheit mit den seitlichen Gewindebohrungen des Tischs **1** verschrauben.

Mechanische Endschalter am Antriebskopf

Den Profilabschnitt 4.1 mit den Schrauben 4.2 am Antriebskopf 2.2 befestigen. Die Nutensteine (Form E) 4.3 in die obere Nut des Profilabschnitts 4.1 einschieben. Die Schrauben 4.6 durch die Bohrungen des Endschalters 4.5 stecken, die Unterlegscheiben 4.4 aufsetzen die Einheit mit den Nutensteinen 4.3 verschrauben.

Mechanische Endschalter am Umlenkkopf

Den Profilabschnitt 5.1 mit den Schrauben 5.2 am Umlenkkopf 2.3 befestigen. Die Nutensteine (Form E) 5.3 in die Nut des Profilabschnitts 5.1 einschieben. Die Schrauben 5.6 durch die Bohrungen des Endschalters 5.5 stecken, die Unterlegscheiben 5.4 aufsetzen die Einheit mit den Nutensteinen 5.3 verschrauben.

Induktive Näherungsschalter

Die Sechskantmuttern 6.2 durch die Aussparung an der Umlenkseite in die obere Nut des Profils 2.1 einschieben und positionieren. Die Leitung des antriebsseitigen Schalters 6.4

unter dem Tisch 1 durchschieben. Die Näherungsschalter 6.1 und 6.4 mit den Schrauben 6.3 befestigen. Es ist dabei darauf zu achten, dass die Leitungsführung wie in Bild 3.15 dargestellt, erfolgt. Eine Justierung des Schaltabstandes ist nicht notwendig. Die obere Profilnut sollte durch ein Nutabdeckprofil 6.5 verschlossen werden. Das Nutabdeckprofil (ID – Nummer 173218, Kapitel 6.5) gehört nicht zu dem Endschaltersatz und muss separat bestellt werden.

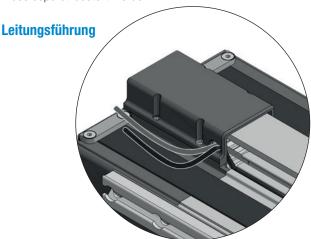


Bild 3.15 ____ Leitungsführung für induktive Näherungsschalter AXE110Z

3.12.4. Montage von Endschaltern am Antriebskopf von Linearachsen AXE_A mit bewegtem Profil

Die Montage der Endschalter und des Betätigungselements hat in nachfolgenden Schritten entsprechend Bild 3.16 zu erfolgen. Der Antriebskopf 1 und das Profil 2 der Linearachsen sind dabei symmetrisch aufgebaut, so dass die Montage auf beiden Seiten möglich ist.

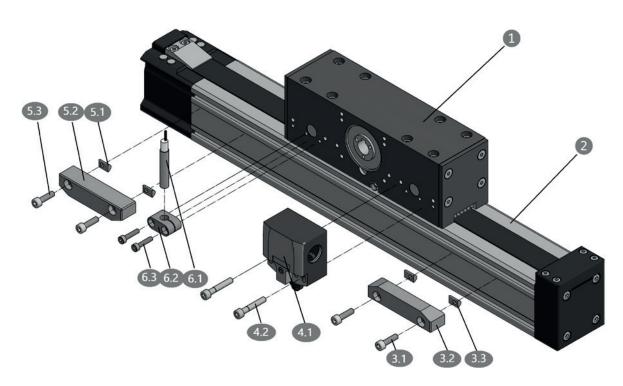


Bild 3.16 ____ Montage von Endschaltern am Antriebskopf von Linearachsen AXE_A mit bewegtem Profil

Betätigungselement für mechanische Endschalter

Die Nutensteine 3.3 in die obere Nut des Profils 2 einsetzen. Die Schrauben 3.1 durch die Bohrungen des Betätigungselements 3.2 stecken mit den Nutensteinen 3.3 verschrauben. Es ist darauf zu achten, dass die Schrägen des Betätigungselements nach oben zeigen.

Mechanische Endschalter

Die Schrauben 4.2 durch die Befestigungsbohrungen der Endschalter 4.1 stecken und mit dem Antriebskopf 1 verschrauben.

Betätigungselement für induktive Näherungsschalter

Die Nutensteine 5.1 in die obere Nut des Profils 2 einsetzen. Die Schrauben 5.3 durch die Bohrungen des Betätigungselements 5.2 stecken mit den Nutensteinen 5.1 verschrauben. Es ist darauf zu achten, dass die Schrägen des Betätigungselements nach unten zeigen.

Induktive Näherungsschalter

Den Halter des Endschalters 6.2 mit den Schrauben 6.3 leicht mit dem Antriebskopf 1 verschrauben. Den induktiven Näherungsschalter 6.1 von oben in den Halter 6.2 einsetzen und auf einen Abstand zum Betätigungselement 5.2 von maximal 1,2 mm einstellen und die Schrauben 6.3 festziehen.

3.12.5. Montage von Endschaltern am Profil von Linearachsen AXE_A mit bewegtem Antriebskopf

Die Montage der Endschalter und des Betätigungselements hat in nachfolgenden Schritten entsprechend Bild 3.17 zu erfolgen. Der Antriebskopf 1 und das Profil 2 der Linearachsen sind dabei symmetrisch aufgebaut, so dass die Montage auf beiden Seiten möglich ist.

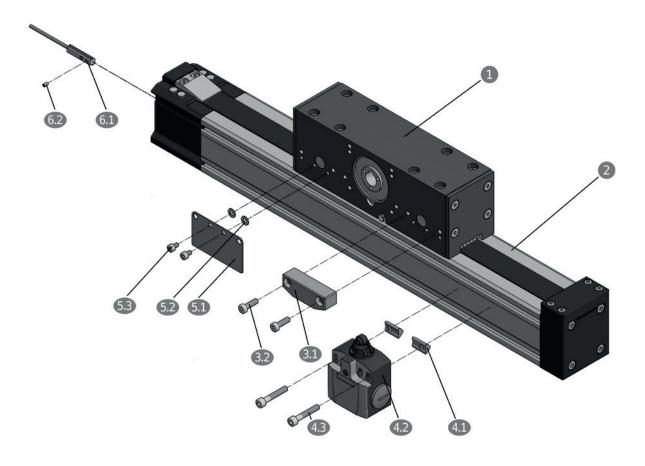


Bild 3.17 ____ Montage von Endschaltern am Profil von Linearachsen AXE_A mit bewegtem Antriebskopf

Betätigungselement für mechanische Endschalter

Die Schrauben 3.2 durch die Bohrungen des Betätigungselements 3.1 stecken mit dem Antriebskopf 1 verschrauben. Es ist darauf zu achten, dass die Schrägen des Betätigungselements nach unten zeigen.

Mechanische Endschalter

Die Nutensteine 4.1 in die obere Nut des Profils 2 einsetzen. Die Schrauben 4.3 durch die Befestigungsbohrungen der Endschalter 4.2 stecken und mit den Nutensteinen 4.1 verschrauben.

Betätigungselement für induktive Näherungsschalter

Die Schrauben 5.3 durch die Bohrungen des Betätigungselements 5.1 stecken, die Unterlegscheiben 5.2 aufsetzen und mit dem Antriebskopf 1 verschrauben.

Induktive Näherungsschalter zum Nuteinbau

Die Endschalter 6.1 von der Umlenkseite in die obere Nut des Profils 2 einschieben. Die Schalter nach dem Positionieren mittels der Gewindestifte 6.2 festschrauben. Es ist dabei darauf zu achten, dass die Leitungslführung der Endschalter wie in Kapitel 6. 3.2 dargestellt, erfolgt. Eine Justierung des Schaltabstandes ist nicht notwendig.

Inbetriebnahme von Linearachsen 3.13

Linearachsen können schnelle Bewegungen mit großer Kraft erzeugen. Anbauten an den Schlitten können bei Kollision zu Personenoder Sachschäden führen. Deshalb sollte bei der Inbetriebnahme mit größter Vorsicht vorgegangen werden.

Weiterhin ist bei der Inbetriebnahme darauf zu achten, dass die zulässigen Belastungen nicht überschritten werden und die Anbauten am Schlitten sicher befestigt sind. Es ist ebenfalls darauf zu achten, dass die maximal möglichen Verfahrwege nicht überschritten werden. Wird der Verfahrweg über Endschalter begrenzt, sollten diese vorher auf Funktion und korrekte Position geprüft werden.

Bei Vertikalachsen bestehen Gefahren durch ungewolltes Herabsinken, dagegen muss der Anwender Vorkehrungen entsprechend EN ISO 13849-1 treffen.

Für Schäden, die aus einer Nichtbeachtung dieser Hinweise zur Inbetriebnahme resultieren, haftet der Hersteller nicht. Das Risiko trägt allein der Anwender.

Wartung und Schmierung

Allgemeine Informationen 4.1

Achtuna!

Alle Wartungs- und Servicearbeiten an der Linearachse müssen im abgeschalteten und gesicherten Zustand erfolgen.

Das Motorgehäuse kann im Betrieb hohe Temperaturen erreichen.

4.2 **Schmierung**

Für die zuverlässige Funktion von Linearachsen ist eine ausreichende Schmierung unerlässlich.

Die Schmierung soll einen Schmierfilm (Ölfilm) zwischen den Wälzkörpern und den Laufbahnen der Führungs- und Antriebselemente sicherstellen, um Verschleiß und die vorzeitige Ermüdung der Bauteile zu verhindern.

Darüber hinaus werden die metallischen Oberflächen vor Korrosion geschützt. Weiterhin ermöglicht der Schmierfilm ein ruckfreies Gleiten der Dichtungen über die Oberflächen und mindert ebenso deren Verschleiß.

Eine unzureichende Schmierung erhöht nicht nur den Verschleiß, sie verkürzt zudem erheblich die Lebensdauer.

Eine optimale Auswahl des Schmiermittels hat entscheidenden Einfluss auf die Funktion und die Lebensdauer der Linearachsen. Damit die Funktion des Systems nicht beeinträchtigt wird und über einen langen Zeitraum erhalten bleibt, ist eine regelmäßige Wartung entsprechend den Umgebungsbedingungen und den spezifischen Anforderungen zu definieren.

Derartige Umgebungsbedingungen und Einflussfaktoren können z.B. sein:

- Hohe bzw. tiefe Temperaturen
- Kondens- und Spritzwassereinwirkungen
- Hohe Schwingungsbeanspruchungen
- Hohe Beschleunigungen und Geschwindigkeiten
- Andauernde kurze Hubbewegungen (< Tischlänge)
- Schmutz- bzw. Staubeinwirkung

4.3 **Schmierstoffe**

Bei der Schmierung des Führungssystems der Linearachsen hat der Schmierstoff hierbei folgende Aufgaben:

- Verminderung der Reibung
- Verringerung des Anlaufmomentes
- Schutz gegen vorzeitigen Verschleiß
- Schutz gegen Korrosion
- Geräuschdämpfung

Linearführungen

Für den Einsatz unter normalen Bedingungen sind Lithiumseifenfette mit der Kennzeichnung KP2-K nach DIN 51825 und der NLGI - Klasse 2 nach DIN 51818 mit EP-Zusätzen einzusetzen. Als Standardfett wird SNR LUB HEAVY DUTY in der Linearachsen der Baureihe AXE verwendet.

Tabelle 4.1 enthält die Daten des für die Linearführungen von NTN-SNR verwendeten Schmiermittels SNR LUB HEAVY DUTY. Fette mit Festschmierstoffanteil (z.B. Graphit oder MoS2) dürfen nicht verwendet werden.

Tabelle _____ 4.1 SNR LUB HEAVY DUTY

Bezeichnung	Grundöl / Seifenart	NLGI- Klasse DIN51818	Walk- penetration DIN ISO 2137 bei 25°C [0,1mm]	Grundöl- Viskosität DIN 51562 bei 40°C [mm²/s]	Dichte [mg/ cm³]	Eigenschaften	Einsatzbereich
SNR LUB HEAVY DUTY	Mineralöl / Lithium mit Hochdruckadditiven	2	295	ca. 115		1 10	allgemeiner Maschinenbau hohe Lasten

4.4 **Schmiermethoden**

SNR - Linearachsen können mittels Handfettpresse oder Zentralschmierung mit Schmierstoff versorgt werden.

4.4.1. **Fettpressen**

Bei Einsatz von Handfettpressen (Bild 4.1) werden die Führungselemente der Linearachsen über die montierten Schmiernippel nachgefettet.

Bild 4.1 _____ SNR - Handfettpresse

4.4.2. Zentralschmierungen

An SNR - Linearachsen der Baureihe AXE können die Schmiernippel gegen Anschlüsse für eine Zentralschmieranlage ausgetauscht werden (Kapitel 6.6).

Ein geeignetes Zentralschmiersystem ist der CONTROL BOOSTER (Bild 4.2). Der CONTROL BOOSTER besitzt sechs Anschlüsse für Schmierleitungen, die einzeln parametriert werden können, und kann wahlweise mit 250 cm³ und 500 cm³ Schmierstoffvolumen in der CONTROL REFILL Einheit ausgerüstet sein. Die CONTROL REFILL Einheit ist nach Entleerung auswechselbar oder werksseitig nachfüllbar.

Bild 4.2 ____ CONTROL BOOSTER

Für weitere Informationen stehen Ihnen unsere NTN-SNR - Anwendungsingenieure zur Verfügung.

4.5 Schmierstellen

In Abhängigkeit von der Baugröße und der Antriebsart besitzen SNR – Linearachsen eine unterschiedliche Anzahl von Schmierstellen in unterschiedlichen Positionen.

AXE60Z, AXE80Z, AXE100Z

Die Linearachsen AXE60Z, AXE80Z und AXE100Z sind an beiden Stirnseiten der Schlitteneinheit (Bild 4.3) mit einem Schmiernippel ausgerüstet, um eine bestmögliche Zugänglichkeit zu gewährleisten. Das bedeutet, dass pro Schmierintervall die in Kapitel 4.6 angegebenen Mengen nur an einer Seite der Achse in den Schmiernippel eingebracht werden muss. Als Schmiernippel sind Kegelschmiernippel montiert.

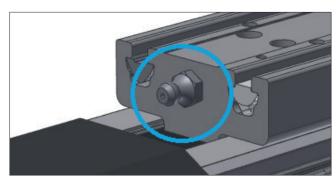


Bild 4.3 ____ Schmierstellen bei AXE60Z, AXE80Z, AXE100Z

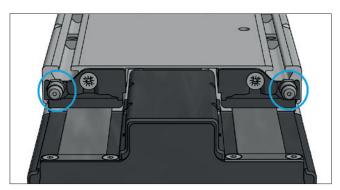


Bild 4.4 ____ Schmierstellen bei AXE110Z, AXE160Z

AXE110Z, AXE160Z

Die Linearachsen AXE110Z besitzen auf der Umlenkseite und die Linearachsen AXE160Z auf beiden Stirnseiten der Schlitteneinheit (Bild 4.4) zwei Schmiernippel, um eine bestmögliche Zugänglichkeit zu gewährleisten. Das bedeutet, dass pro Schmierintervall die in Kapitel 4.6 angegebenen Mengen nur an einer Stirnseite der Achse in beide Schmiernippel eingebracht werden muss. Als Schmiernippel sind Kugelschmiernippel montiert.

AXE40A, AXE60A

Die Linearachsen AXE40A und AXE60A sind an beiden Seiten des Antriebskopfs (Bild 4.5) mit einem Schmiernippel ausgerüstet, um eine bestmögliche Zugänglichkeit zu gewährleisten. Das bedeutet, dass pro Schmierintervall die in Kapitel 4.6 angegebenen Mengen nur an einer Seite der Achse in den Schmiernippel eingebracht werden muss. Als Schmiernippel sind Trichterschmiernippel montiert

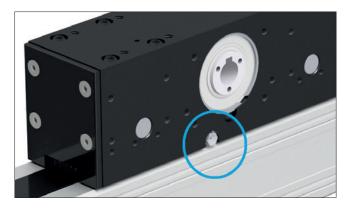


Bild 4.5 _____ Schmierstellen bei AXE40A, AXE60A

4.6 Schmiermengen

Die nachfolgende Tabelle enthält die Angaben zu den entsprechenden Schmierstoffmengen bei Schmierung mit dem Standardschmierstoff zur Nachschmierung der Führungselemente.

Die Nachschmiermengen für Linearachsen mit Linearführungen sind in Tabelle 4.2 zusammengefasst.

Tabelle 4.2 __ Schmiermengen der Linearführungen

Тур	Schmiermenge pro Schmierstelle [cm³]						
	В	C	D				
	KA .	Œ_Z					
AXE60Z	1,0						
AXE80Z	2,8						
AXE100Z		2,4					
AXE110Z			0,6				
AXE160Z			2,8				
	AXE_A						
AXE40A	0,3						
AXE60A	1,0						

4.7 **Schmierintervalle**

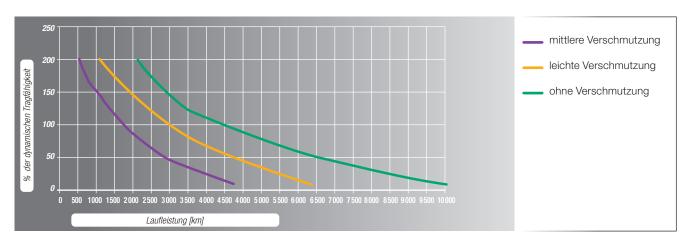
Lieferzustand

SNR - Linearachsen besitzen bei Lieferung bereits eine Erstbefettung. Nach der Montage sollten die Linearachsen entsprechend den vorangegangen Kapiteln abgeschmiert werden. Zur optimalen Fettverteilung im System sollte dieser Vorgang in zwei bis drei Teilschritten mit zwischenzeitlicher Bewegung über einen längeren Hub erfolgen.

Bei Wiederinbetriebnahme der Anlage nach längerer Stilllegung ist eine Nachbefettung mit der doppelten, in Kapitel 4.5 angegebenen Menge, vorzunehmen.

Soll während des Betriebes einer Anlage das Fabrikat des Schmierstoffs gewechselt werden, ist unbedingt die Mischbarkeit der Schmierstoffe zu prüfen.

Einflussfaktoren


Die Nachschmierintervalle werden von vielen Faktoren (Kapitel 4.1) beeinflusst. Den größten Einfluss haben in der Regel die Belastung und die vorhandenen Verschmutzungen. Die genauen Nachschmierintervalle können nur nach Ermittlung unter realen Einsatzbedingungen und Beurteilung über einen ausreichend langen Zeitraum für eine konkrete Anwendung festgelegt werden.

In Tabelle 4.3 ist die Einsetzbarkeit der unterschiedlichen Linearachsen unter unterschiedlichen Verschmutzungsgraden zusammengefasst.

Tabelle 4.3 __ Verschmutzungsgrad von Linearachsen

	Verschmutzungsgrad	Anwendungsbereich	Einsetzbare Linearachsen AXE
	Ohne Verschmutzungen	- Labor - sehr saubere Arbeitsbereiche	alle
	Leichte Verschmutzungen	- Montagebereiche mit geringem Staub- und Schmutzanfall	alle
	Mittlere Verschmutzungen	- Produktionsbereiche und Maschinen mit erhöhtem Staub- und Schmutzanfall	nur AXE110 und AXE160

Die Nachschmierintervalle der Linearführungen sind in dem Diagramm in Bild 4.6 in Abhängigkeit von der Verschmutzung dargestellt. Da die Schmierstoffhersteller keine allgemeine Gebrauchsdauer für ihre Produkte garantieren, empfehlen wir bei geringen Laufleistungen ein Nachschmierintervall von mindestens einmal jährlich.

__ Nachschmierintervalle von Linearführungen

Längere Nachschmierintervalle sind ggf. nach Rücksprache mit dem Schmierstoffhersteller für einen definierten Anwendungsfall möglich. Zur Nachschmierung sind Lithiumseifenfette KP2-K nach DIN 51825 und der NLGI – Klasse 2 auf Mineralölbasis zu verwenden, andernfalls muss die Verträglichkeit überprüft werden.

Fette mit Festschmierstoffanteil (z.B. Graphit oder MoS₂) dürfen nicht verwendet werden.

4.8 **Austausch Abdeckband**

4.8.1. Austausch Abdeckband bei Linearachsen AXE110 und AXE160

Für den Austausch des Abdeckbandes an Linearachsen der Baureihen AXE110Z und AXE160Z sind die nachfolgenden Schritte entsprechend Bild 4.7 einzuhalten:

- 1. Befestigungsschrauben 2 und Enddeckel 1 demontieren.
- 2. Schmiernippel 3 demontieren. Die Scheibe 4 und die Bandumlenkung 6 entfernen.
- 3. Befestigungsschrauben 6 demontieren und Befestigungsleiste 7 entfernen.
- 4. Abdeckband 8 herausziehen und durch ein neues ersetzen.
- 5. Zum Befestigen, das Abdeckband leicht spannen und die Schritte 2 und 3 in umgekehrter Reihenfolge ausführen. Dabei darf das Abdeckband nicht am Tisch schleifen. Dieses kann durch Inspektionsbohrungen im Grund der Tischnuten überprüft werden (mit Kunststoffstopfen verschlossen). Abdeckband 3 hinter der Befestigungsleiste 7 abschneiden.
- 6. Linearachse mit Enddeckel 1 verschließen

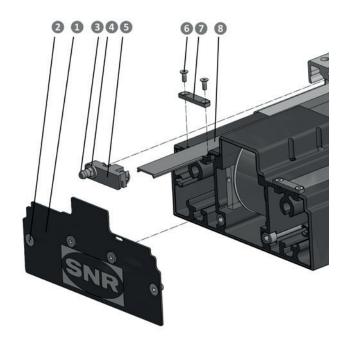


Bild 4.7 ____ Austausch Abdeckband

4.9 Verschleißteil - Sets

Für Linearachsen der Baureihen AXE sind Verschleißteil - Sets verfügbar. In Tabelle 4.6 sind die Verschleißteil - Sets und die Abdeckbänder inklusive der Ident-Nummern zusammengefasst.

Um das Abdeckband sicher montieren zu können, sollte die bestellte Länge etwa 200 bis 300 mm pro Seite länger als die Achse sein. Die Bestelllänge der Abdeckbänder ist auf volle Meter aufzurunden. Pro Linearachse werden zwei Abdeckbänder benötigt. Die Abdeckbänder für Linearachsen der Baureihe AXE sind universell einsetzbar.

Tabelle 4.6 __ Verschleißteil - Sets und Abdeckbänder

Typenschlüssel	Bezeichnung	ID - Nummer
AX-SP-110-A-WPS	Verschleißteil-Set für AXE110Z	268344
AX-SP-160-A-WPS	Verschleißteil-Set für AXE160Z	268345
AX-SP-CST-U-19,0-1M	Abdeckband, 1 m	459772
AX-SP-CST-U-19,0-2M	Abdeckband, 2 m	461092
AX-SP-CST-U-19,0-3M	Abdeckband, 3 m	461093
AX-SP-CST-U-19,0-4M	Abdeckband, 4 m	461094
AX-SP-CST-U-19,0-5M	Abdeckband, 5 m	461096
AX-SP-CST-U-19,0-6M	Abdeckband, 6 m	461097
AX-SP-CST-U-19,0-7M	Abdeckband, 7 m	461098

5. SNR - Linearachsen AXE

Übersicht 5.1

5.1.1. **Baureihen**

Die Linearachsen der Baureihe AXE verbinden anwenderorientierte Produktentwicklung und hohe Qualitätsanforderungen. Für den Anwender ergeben sich, durch die individuelle Konfigurierbarkeit, optimale Lösungen für Anforderungen aus allen Bereichen der Industrie. Nachfolgend sind die wichtigsten Merkmale der Baureihen zusammengefasst.

Efficiency Line Achsen AXE Z

- Universell, als Einzelachse oder in Kombination mit mehreren Achsen einsetzbare Linearachsen (Bild 5.1)
- Vielfältige Kombinationsmöglichkeiten innerhalb der AXE Baureihe durch Standardverbindungselemente
- Leichte und hochsteife Aluminiumprofile als Basismaterial
- 5 Standardbaugrößen von 60 mm bis 160 mm Profilbreite
- Verschleißarmer Zahnriemenantrieb
- Mit der Riemenscheibe verschraubte Kupplung zur kraftschlüssigen Drehmomentübertragung für höchste Dynamik (dauerhaft spiel- und verschleißfreie Verbindung)
- Servicefreundliches Design mit Zugänglichkeit aller Schmieranschlüsse an den Tischeinheiten

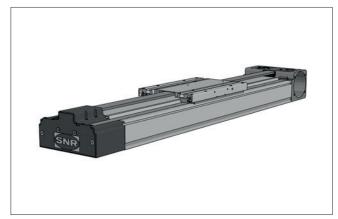


Bild 5.1 ____ AXE mit Zahnriemenantrieb

Efficiency Line Achsen AXE_A

- Kompakte Linearachse für den Einsatz als Hubachse für leichte und mittlere Lasten (Bild 5.2)
- Hohe Dynamik durch geringe bewegte Eigenmasse
- · Leichte und hochsteife Aluminiumprofile als Basismaterial
- 2 Standardbaugrößen von 40 mm und 60 mm Profilbreite
- Verschleißarmer Zahnriemenantrieb
- Mit der Riemenscheibe verschraubte Kupplung zur kraftschlüssigen Drehmomentübertragung für höchste Dynamik (dauerhaft spiel- und verschleißfreie Verbindung)
- · Servicefreundliches Design mit Zugänglichkeit aller Schmieranschlüsse beidseitig am Antriebskopf

__ AXF mit Zahnriemen- Ω - Antrieb

5.1.2. Hauptparameter

Linearachsen mit Zahnriemenantrieb

Tabelle 5.1 __ Hauptparameter Linearachsen mit Zahnriemenantrieb

Тур	Achs- querschnitt [mm]	Vorschub- konstante [mm/Umdr.]	Max. dyn. Betriebslast [N]	Führungs- system	max. Geschwin- digkeit [m/s]	max. Gesamtlänge [m]	Max. dyn. T [1		Мах	a. dyn. Lastmom [Nm]	ente
							Fy	Fz	M _x	M_y	M_z
AXE60Z	60 x 80	150	560	В	5	6 120	2 820	2 820	19,5	127	127
AXE80Z	80 x 100	200	870	В	5	8 140	3 600	3 600	33,7	241	241
AXE100Z	100 x 125	264	2 200	С	5	8 120	5 050	5 050	54	707	707
AXE110Z	110 x 65	170	980	D	5	4 096	2 300	2 300	80	110	110
AXE160Z	160 x 83	216	1 830	D	5	6 110	6 000	9 000	475	475	475

Linearachsen mit Zahnriemen - Ω - Antrieb

Tabelle 5.2 __ Hauptparameter Linearachsen mit Zahnriemen - Ω - Antrieb

Тур	Achs- querschnitt [mm]	Vorschub- konstante [mm/Umdr.]	Max. dyn. Betriebslast [N]	Führungs- system	max. Geschwin- digkeit [m/s]	max. Gesamtlänge [m]		ragfähigkeit V]	Max	a. dyn. Lastmom [Nm]	ente
							Fy	Fz	M _x	M_y	M_z
AXE40A	40 x 55,8	75	210	В	5	1 020	500	500	2,4	20	20
AXE60A	60 x 72,7	150	560	В	5	3 868	2 800	2 800	19	100	100

5.2 AXE Efficiency Line Achsen mit Zahnriemenantrieb

5.2.1. Aufbau

- Antriebskopf
- 2 Zahnriemen
- Spinning in the state of the
- Schlitteneinheit
- 6 Profil
- O Umlenkkopf

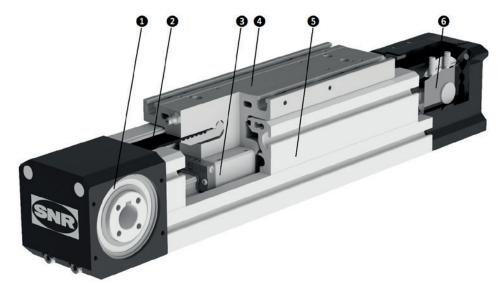
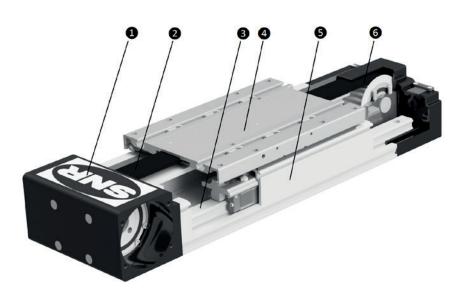
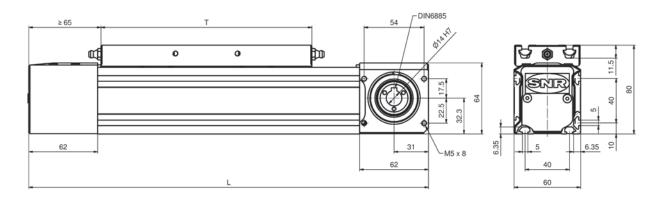
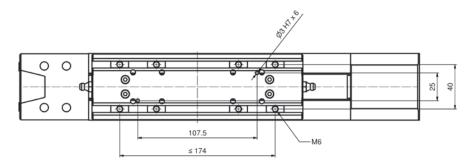


Bild 5.3 ____ Aufbau AXE60Z, AXE80Z, AXE100Z

- Antriebskopf
- 2 Zahnriemen
- 3 Führungssystem
- 4 Schlitteneinheit
- Profil
- O Umlenkkopf


Bild 5.4 ____ Aufbau AXE110Z, AXE160Z

Abmessungen / Technische Daten 5.2.2

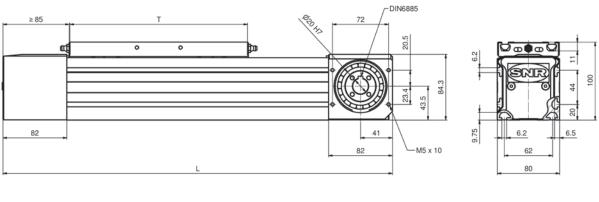
AXE60Z

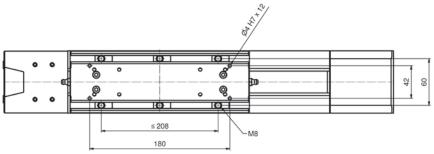
T = Tischlänge

S = Verfahrweg

L = T + S + 127 mm

Führungssystem		Linearführung B
Tischlänge T	mm	190
Antriebselement		Zahnriemen 25AT5
Maximale Verfahrgeschwindigkeit	m /min	300
Zulässige dynamische Betriebslast	N	560
Hub pro Umdrehung	mm	150+0,3
Leerlaufdrehmoment	Nm	0,8
Maximales Antriebsmoment	Nm	13,4
Trägheitsmoment ¹	Kgcm ²	0,74
Flächenträgheitsmoment (Profil) l _y	cm ⁴	40,04
Flächenträgheitsmoment (Profil) I _z	cm ⁴	60,64
Maximale Gesamtlänge	mm	6 120
Wiederholgenauigkeit	mm	0,05

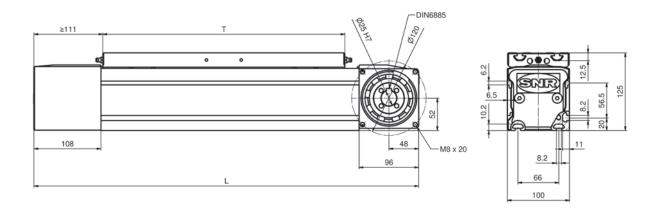

¹⁻ Trägheitsmoment ohne Getriebe

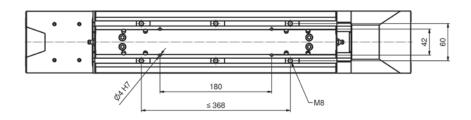

Тур	ID - Nummer	Verfahrweg S [mm]	Gesamtlänge L [mm]	Masse [kg]
AXE60Z14-B-0040	450076	0040	360	3,1
AXE60Z14-B-0100	450079	0100	420	3,4
AXE60Z14-B-0160	450083	0160	480	3,7
AXE60Z14-B-0220	450084	0220	540	4,0
AXE60Z14-B-0280	450086	0280	600	4,3
AXE60Z14-B-0340	450087	0340	660	4,6
AXE60Z14-B-0400	450088	0400	720	4,9
AXE60Z14-B-0460	450090	0460	780	5,3
AXE60Z14-B-0520	450091	0520	840	5,6
AXE60Z14-B-0580	450092	0580	900	5,9
AXE60Z14-B-0640	450093	0640	960	6,2
AXE60Z14-B-0700	450094	0700	1020	6,5
AXE60Z14-B-0760	450095	0760	1080	6,8
AXE60Z14-B-0820	450096	0820	1140	7,1
AXE60Z14-B-0880	450108	0880	1200	7,4
AXE60Z14-B-0940	450109	0940	1260	7,7
AXE60Z14-B-1000	450110	1000	1320	8,0
AXE60Z14-B-1060	450111	1060	1380	8,3
AXE60Z14-B-1120	450112	1120	1440	8,6
AXE60Z14-B-1180	450113	1180	1500	8,9
AXE60Z14-B-1240	450114	1240	1560	9,2
XXE60Z14-B-1300	450115	1300	1620	9,5
AXE60Z14-B-1360	450116	1360	1680	9,8
AXE60Z14-B-1420	450117	1420	1740	10,1
AXE60Z14-B-1480	450118	1480	1800	10,4
AXE60Z14-B-1540	450119	1540	1860	10,7
AXE60Z14-B-1600	450120	1600	1920	11,0
AXE60Z14-B-1660	450121	1660	1980	11,3
AXE60Z14-B-1720	450122	1720	2040	11,6
AXE60Z14-B-1780	450123	1780	2100	11,9
AXE60Z14-B-1900	450124	1900	2220	12,5
AXE60Z14-B-2020	450125	2020	2340	13,1
AXE60Z14-B-2140	450126	2140	2460	13,7
AXE60Z14-B-2260	450127	2260	2580	14,3
AXE60Z14-B-2380	450128	2380	2700	15,0
AXE60Z14-B-2500	450129	2500	2820	15,6
AXE60Z14-B-2620	450130	2620	2940	16,2
AXE60Z14-B-2740	450131	2740	3060	16,8
XE60Z14-B-2860	450132	2860	3180	17,4
AXE60Z14-B-3100	450133	3100	3420	18,6
AXE60Z14-B-3340	450134	3340	3660	19,8
AXE60Z14-B-3580	450136	3580	3900	21,0
AXE60Z14-B-3820	450137	3820	4140	22,2
XE60Z14-B-4060	450138	4060	4380	23,4
AXE60Z14-B-4300	450140	4300	4620	24,7
AXE60Z14-B-4600	450141	4600	4920	26,2
AXE60Z14-B-4900	450142	4900	5220	27,7
AXE60Z14-B-5200	450143	5200	5520	29,2
AXE60Z14-B-5500	450144	5500	5820	30,7
AXE60Z14-B-5800	450145	5800	6120	32,2

AXE80Z

T = Tischlänge

S = Verfahrweg


L = T + S + 167 mm


Führungssystem		Linearführung B
Tischlänge T	mm	230
Antriebselement		Zahnriemen 32AT5
Maximale Verfahrgeschwindigkeit	m /min	300
Zulässige dynamische Betriebslast	N	870
Hub pro Umdrehung	mm	200+0,4
Leerlaufdrehmoment	Nm	1,6
Maximales Antriebsmoment	Nm	3,68
Trägheitsmoment ¹	Kgcm ²	27,7
Flächenträgheitsmoment (Profil) l _y	cm ⁴	146,9
Flächenträgheitsmoment (Profil) I _z	cm ⁴	199,2
Maximale Gesamtlänge	mm	8 140
Wiederholgenauigkeit	mm	0,05

¹⁻ Trägheitsmoment ohne Getriebe

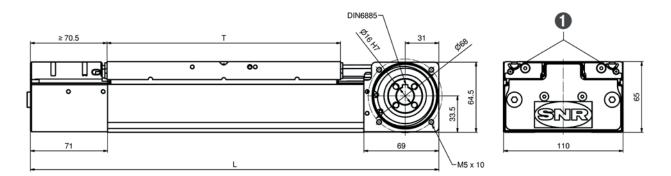
Тур	ID - Nummer	Verfahrweg S [mm]	Gesamtlänge L [mm]	Masse [kg]
AXE80Z20-B-0060	450236	0060	460	7,2
AXE80Z20-B-0120	450237	0120	520	7,8
AXE80Z20-B-0180	450241	0180	580	8,3
AXE80Z20-B-0240	450242	0240	640	8,9
AXE80Z20-B-0300	450243	0300	700	9,4
AXE80Z20-B-0360	450244	0360	760	10,0
AXE80Z20-B-0420	450245	0420	820	10,5
AXE80Z20-B-0480	450246	0480	880	11,1
AXE80Z20-B-0540	450247	0540	940	11,6
AXE80Z20-B-0600	450251	0600	1000	12,2
AXE80Z20-B-0660	450252	0660	1060	12,7
AXE80Z20-B-0720	450253	0720	1120	13,3
AXE80Z20-B-0780	450254	0780	1180	13,8
AXE80Z20-B-0840	450255	0840	1240	14,4
AXE80Z20-B-0900	450256	0900	1300	14,9
AXE80Z20-B-0960	450257	0960	1360	15,5
AXE80Z20-B-1020	450258	1020	1420	16,0
XXE80Z20-B-1080	450259	1080	1480	16,6
AXE80Z20-B-1140	450260	1140	1540	17,1
AXE80Z20-B-1200	450261	1200	1600	17,7
AXE80Z20-B-1260	450262	1260	1660	18,2
AXE80Z20-B-1320	450263	1320	1720	18,8
AXE80Z20-B-1380	450264	1380	1780	19,3
XE80Z20-B-1440	450265	1440	1840	19,9
XE80Z20-B-1440	450266	1500	1900	20,4
XE80Z20-B-1560	450267	1560	1960	21,0
AXE80Z20-B-1620	450269	1620	2020	21,5
AXE80Z20-B-1680	450270	1680	2080	21,5
AXE80Z20-B-1740	450270	1740	2140	22,6
AXE80Z20-B-1740	450272	1860	2260	23,8
AXE80Z20-B-1980	450274	1980	2380	24,9
AXE80Z20-B-2100	450276	2100	2500	26,0
AXE80Z20-B-2220	450277	2220	2620	27,1
XXE80Z20-B-2340	450279	2340	2740	28,2
AXE80Z20-B-2460	450280	2460	2860	29,3
AXE80Z20-B-2580	450281	2580	2980	30,4
AXE80Z20-B-2700	450282	2700	3100	31,5
AXE80Z20-B-2820	450283	2820	3220	32,6
AXE80Z20-B-3060	450284	3060	3460	34,8
AXE80Z20-B-3300	450285	3300	3700	37,0
AXE80Z20-B-3540	450287	3540	3940	39,2
XXE80Z20-B-3780	410927	3780	4180	41,4
AXE80Z20-B-4020	450290	4020	4420	43,6
AXE80Z20-B-4260	450292	4260	4660	45,8
AXE80Z20-B-4500	450293	4500	4900	48,0
AXE80Z20-B-4800	450294	4800	5200	50,7
AXE80Z20-B-5100	450295	5100	5500	53,5
AXE80Z20-B-5400	450296	5400	5800	56,2
AXE80Z20-B-5700	450297	5700	6100	59,0
AXE80Z20-B-6000	450298	6000	6400	61,7
AXE80Z20-B-6600	450299	6600	7000	67,2
AXE80Z20-B-7200	450300	7200	7600	72,7
AXE80Z20-B-7680	450301	7680	8080	77,1

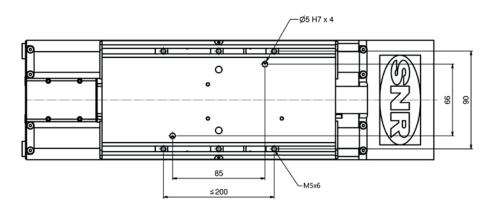
AXE100Z

T = Tischlänge

S = Verfahrweg

L = T + S + 207 mm


Führungssystem		Linearführung C
Tischlänge T	mm	390
Antriebselement		Zahnriemen 40STD8
Maximale Verfahrgeschwindigkeit	m /min	300
Zulässige dynamische Betriebslast	N	2 200
Hub pro Umdrehung	mm	264+0,5
Leerlaufdrehmoment	Nm	3,1
Maximales Antriebsmoment	Nm	92,6
Trägheitsmoment ¹	Kgcm ²	14,3
Flächenträgheitsmoment (Profil) l _y	cm ⁴	366,7
Flächenträgheitsmoment (Profil) I _z	cm ⁴	482,8
Maximale Gesamtlänge	mm	8 120
Wiederholgenauigkeit	mm	0,05


¹⁻ Trägheitsmoment ohne Getriebe

Тур	ID - Nummer	Verfahrweg S [mm]	Gesamtlänge L [mm]	Masse [kg]
AXE100Z25-C-0200	450302	0200	800	18,0
AXE100Z25-C-0260	450303	0260	860	18,9
AXE100Z25-C-0320	450304	0320	920	19,8
AXE100Z25-C-0380	450305	0380	980	20,6
AXE100Z25-C-0440	450312	0440	1040	21,5
AXE100Z25-C-0500	450314	0500	1100	22,4
AXE100Z25-C-0560	450316	0560	1160	23,3
AXE100Z25-C-0620	450317	0620	1220	24,2
AXE100Z25-C-0680	450318	0680	1280	25,1
AXE100Z25-C-0740	450320	0740	1340	26,0
AXE100Z25-C-0800	450321	0800	1400	26,9
AXE100Z25-C-0860	450322	0860	1460	27,8
AXE100Z25-C-0920	450323	0920	1520	28,7
AXE100Z25-C-0980	450369	0980	1580	29,6
AXE100Z25-C-1040	450371	1040	1640	30,5
AXE100Z25-C-1100	450372	1100	1700	31,3
AXE100Z25-C-1160	450374	1160	1760	32,2
AXE100Z25-C-1220	450377	1220	1820	33,1
AXE100Z25-C-1280	450381	1280	1880	34,0
AXE100Z25-C-1340	450382	1340	1940	34,9
AXE100Z25-C-1400	450383	1400	2000	35,8
AXE100Z25-C-1460	450384	1460	2060	36,7
AXE100Z25-C-1520	450385	1520	2120	37,6
AXE100Z25-C-1580	450386	1580	2180	38,5
AXE100Z25-C-1700	450387	1700	2300	40,3
AXE100Z25-C-1820	450388	1820	2420	42,0
AXE100Z25-C-1940	450389	1940	2540	43,8
AXE100Z25-C-2060	450390	2060	2660	45,6
AXE100Z25-C-2180	450391	2180	2780	47,4
AXE100Z25-C-2300	450392	2300	2900	49,2
AXE100Z25-C-2420	450393	2420	3020	51,0
AXE100Z25-C-2540	450394	2540	3140	52,7
AXE100Z25-C-2660	450395	2660	3260	54,5
AXE100Z25-C-2900	450396	2900	3500	58,1
AXE100Z25-C-3140	450397	3140	3740	61,7
AXE100Z25-C-3380	450398	3380	3980	65,2
AXE100Z25-C-3620	410929	3620	4220	68,8
AXE100Z25-C-3860	450400	3860	4460	72,4
AXE100Z25-C-3000 AXE100Z25-C-4100	450402	4100	4700	75,9
AXE100Z25-C-4400	450402	4400	5000	80,4
AXE100Z25-C-4400 AXE100Z25-C-4700	450409	4700	5300	84,8
AXE100Z25-C-4700 AXE100Z25-C-5000				
	450410	5000	5600 5900	89,3
AXE100Z25-C-5300	450412	5300		93,7
AXE100Z25-C-5600	450413	5600	6200	98,2
AXE100Z25-C-5900	450414	5900	6500	102,7
AXE100Z25-C-6500	450415	6500	7100	111,6
AXE100Z25-C-7100	450416	7100	7700	120,5
AXE100Z25-C-7520	450417	7520	8120	126,7

AXE110Z

Schmiermöglichkeit beidseitig

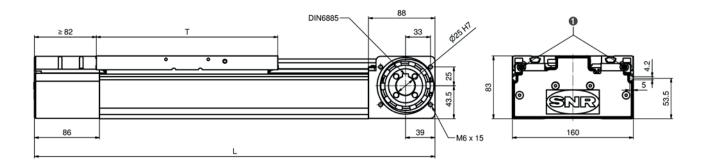
T = Tischlänge

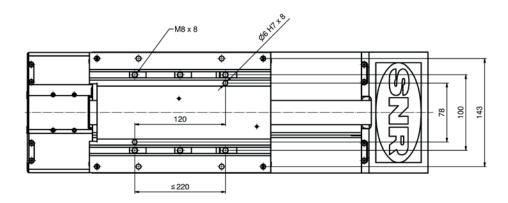
S = Verfahrweg

L = T + S + 139,5 mm

Führungssystem		Linearführung D
Tischlänge T	mm	215
Abstand der Nutensteine L1		≤ 200 mm (empfohlen 100 mm)
Antriebselement		Zahnriemen 25STD5
Maximale Verfahrgeschwindigkeit	m /min	300
Zulässige dynamische Betriebslast	N	980
Hub pro Umdrehung	mm	170 ^{+0,5}
Leerlaufdrehmoment	Nm	1,7
Maximales Antriebsmoment	Nm	26,5
Trägheitsmoment1	Kgcm ²	1,4
Flächenträgheitsmoment (Profil) I _y	cm4	37,45
Flächenträgheitsmoment (Profil) I _z	cm4	138,31
Maximale Gesamtlänge	mm	4 096
Wiederholgenauigkeit	mm	0,05

¹⁻ Trägheitsmoment ohne Getriebe


Abmessungen und Massen


Тур	ID - Nummer	Verfahrweg S [mm]	Gesamtlänge L [mm]	Masse [kg]
AXE110Z16-D-0080	450440	0800	436	4,6
AXE110Z16-D-0140	450441	0140	496	5,1
AXE110Z16-D-0200	450442	0200	556	5,5
AXE110Z16-D-0260	450443	0260	616	5,9
AXE110Z16-D-0320	450444	0320	676	6,3
AXE110Z16-D-0380	450445	0380	736	6,8
AXE110Z16-D-0440	450446	0440	796	7,2
AXE110Z16-D-0500	450447	0500	856	7,6
AXE110Z16-D-0560	450448	0560	916	8,0
AXE110Z16-D-0620	450450	0620	976	8,5
AXE110Z16-D-0680	450451	0680	1036	8,9
AXE110Z16-D-0740	450452	0740	1096	9,3
AXE110Z16-D-0800	450453	0800	1156	9,7
AXE110Z16-D-0860	450454	0860	1216	10,2
AXE110Z16-D-0920	450455	0920	1276	10,6
AXE110Z16-D-0980	450456	0980	1336	11,0
AXE110Z16-D-1040	450457	1040	1396	11,4
AXE110Z16-D-1100	450459	1100	1456	11,9
AXE110Z16-D-1160	450460	1160	1516	12,3
AXE110Z16-D-1220	450461	1220	1576	12,7
AXE110Z16-D-1280	450462	1280	1636	13,1
AXE110Z16-D-1340	450463	1340	1696	13,6
AXE110Z16-D-1400	450464	1400	1756	14,0
AXE110Z16-D-1460	450465	1460	1816	14,4
AXE110Z16-D-1520	450466	1520	1876	14,8
AXE110Z16-D-1580	450467	1580	1936	15,3
AXE110Z16-D-1640	450477	1640	1890	15,7
AXE110Z16-D-1700	450468	1700	2056	16,1
AXE110Z16-D-1820	450469	1820	2176	16,9
AXE110Z16-D-1940	450470	1940	2296	17,8
AXE110Z16-D-2060	450471	2060	2416	18,6
AXE110Z16-D-2180	450472	2180	2536	19,5
AXE110Z16-D-2300	450473	2300	2656	20,3
AXE110Z16-D-2420	450474	2420	2776	21,2
AXE110Z16-D-2540	450475	2540	2896	22,0
AXE110Z16-D-2660	450476	2660	3016	22,9
AXE110Z16-D-2780	450478	2780	3136	23,7
AXE110Z16-D-3020	450479	3020	3376	25,4
AXE110Z16-D-3260	450480	3260	3616	27,2
AXE110Z16-D-3500	450481	3500	3856	28,9
AXE110Z16-D-3740	410930	3740	4096	30,6

AXE160Z

1 Schmiermöglichkeit beidseitig

T = Tischlänge

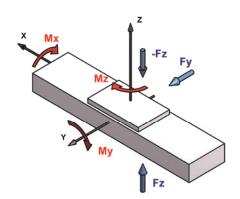
S = Verfahrweg

L = T + S + 170 mm

Führungssystem		Linearführung B
Tischlänge T	mm	240
Abstand der Nutensteine L1		≤ 220 mm (empfohlen 120 mm)
Antriebselement		Zahnriemen 32STD8
Maximale Verfahrgeschwindigkeit	m /min	300
Zulässige dynamische Betriebslast	N	1 830
Hub pro Umdrehung	mm	216+0,5
Leerlaufdrehmoment	Nm	3,6
Maximales Antriebsmoment	Nm	62,9
Trägheitsmoment	Kgcm ²	5,8
Flächenträgheitsmoment (Profil) I _y	cm4	140,29
Flächenträgheitsmoment (Profil) I _z	cm4	666,80
Maximale Gesamtlänge	mm	6 110
Wiederholgenauigkeit	mm	0,05

¹⁻ Trägheitsmoment ohne Getriebe

Тур	ID - Nummer	Verfahrweg S [mm]	Gesamtlänge L [mm]	Masse [kg]
AXE160Z25-D-0120	450487	0120	530	11,8
AXE160Z25-D-0180	450488	0180	590	12,6
AXE160Z25-D-0240	450496	0240	650	13,3
AXE160Z25-D-0300	450497	0300	710	14,1
AXE160Z25-D-0360	450498	0360	770	14,8
AXE160Z25-D-0420	450499	0420	830	15,6
AXE160Z25-D-0480	450500	0480	890	16,3
AXE160Z25-D-0540	450501	0540	950	17,1
AXE160Z25-D-0600	450502	0600	1010	17,9
AXE160Z25-D-0660	450503	0660	1070	18,6
AXE160Z25-D-0720	450504	0720	1130	19,4
AXE160Z25-D-0780	450505	0780	1190	20,1
AXE160Z25-D-0840	450506	0840	1250	20,9
AXE160Z25-D-0900	450508	0900	1310	21,6
AXE160Z25-D-0960	450509	0960	1370	22,4
AXE160Z25-D-1020	450510	1020	1430	23,1
AXE160Z25-D-1080	450511	1080	1490	23,9
AXE160Z25-D-1140	450512	1140	1550	24,6
AXE160Z25-D-1200	450513	1200	1610	25,4
AXE160Z25-D-1260	450514	1260	1670	26,2
AXE160Z25-D-1320	450515	1320	1730	26,9
AXE160Z25-D-1380	450516	1380	1790	27,7
AXE160Z25-D-1440	450517	1440	1850	28,4
AXE160Z25-D-1500	450518	1500	1910	29,2
AXE160Z25-D-1560	450520	1560	1970	29,9
AXE160Z25-D-1620	450521	1620	2030	30,7
AXE160Z25-D-1680	450522	1680	2090	31,4
AXE160Z25-D-1800	450524	1800	2210	32,9
AXE160Z25-D-1920	450526	1920	2330	34,5
AXE160Z25-D-2040	450527	2040	2450	36,0
AXE160Z25-D-2160	450528	2160	2570	37,5
AXE160Z25-D-2280	450529	2280	2690	39,0
AXE160Z25-D-2400	450530	2400	2810	40,5
AXE160Z25-D-2520	450531	2520	2930	42,0
AXE160Z25-D-2640	450533	2640	3050	43,5
AXE160Z25-D-2760	450536	2760	3170	45,0
AXE160Z25-D-3000	450537	3000	3410	48,0
AXE160Z25-D-3240	450538	3240	3650	51,1
AXE160Z25-D-3480	450539	3480	3890	54,1
AXE160Z25-D-3720	410935	3720	4130	57,1
AXE160Z25-D-3960	450541	3960	4370	60,1
AXE160Z25-D-4200	450542	4200	4610	63,1
AXE160Z25-D-4500	450543	4500	4910	66,9
AXE160Z25-D-4800	450544	4800	5210	70,7
AXE160Z25-D-5100	450545	5100	5510	74,5
AXE160Z25-D-5400	450546	5400	5810	78,2
AXE160Z25-D-5700	450547	5700	6110	82,0


5.2.3 Maximale statische Belastbarkeit

Тур	Führungssystem	Last [N]		Lastmoment [Nm]			
		F _y F _z		M _x	M_{y}	M_z	
AXE60Z	В	4 860	9 650	66	350	180	
AXE80Z	В	7 900	16 000	150	800	400	
AXE100Z	С	11 200	16 500	179	2 340	1 570	
AXE110Z	D	7 900	7 900	275	375	375	
AXE160Z	D	32 000	32 000	1 600	1 650	1 650	

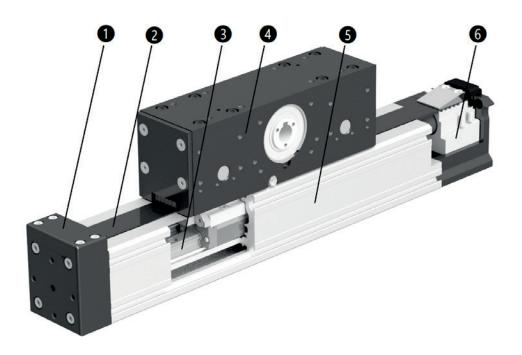
5.2.4 Dynamische Tragfähigkeit

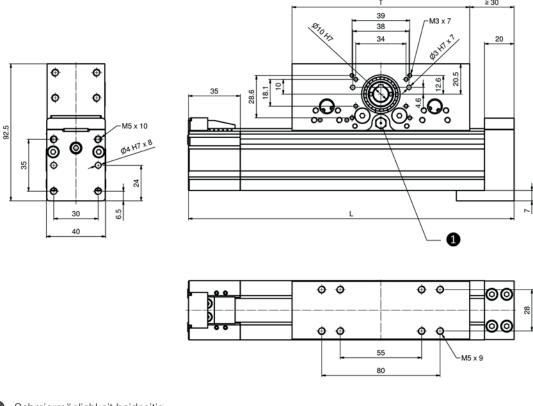
Die dynamischen Belastbarkeiten der Führungssysteme basieren auf einer nominellen Lebensdauer von 50 000 km.

Тур	Führungssystem	Last [N]		Lastmoment [Nm]			
		F _y	F _z	M _x	M _y	M_z	
AXE60Z	В	2 820	2 820	19,5	127	127	
AXE80Z	В	3 600	3 600	33,7	241	241	
AXE100Z	С	5 050	5 050	54,0	707	707	
AXE110Z	D	2 300	2 300	80,0	110	110	
AXE160Z	D	6 000	9 000	475	475	475	

AXE Efficiency Line Achsen mit Zahnriemen - Ω - Antrieb **5.3**

5.3.1 Aufbau




Bild 5.5 ____ Aufbau AXE_A

- Zahnriemenklemmung
- Zahnriemen
- 3 Führungssystem
- Antriebskopf
- Profil
- 6 Zahnriemenspanneinheit

Abmessungen / Technische Daten 5.3.2

AXE40A

1 Schmiermöglichkeit beidseitig

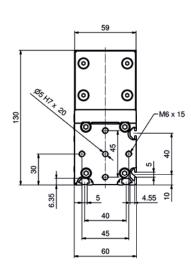
T = Tischlänge

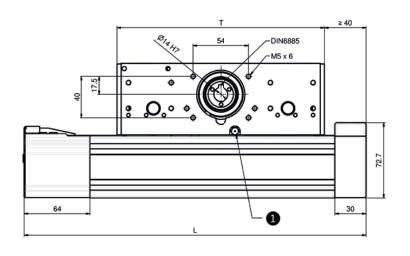
S = Verfahrweg

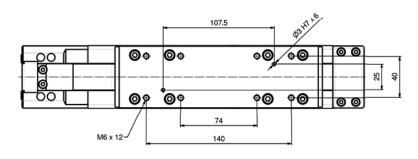
L = T + S + 65 mm

Führungssystem		Linearführung B
Tischlänge T	mm	120
Antriebselement		Zahnriemen 16AT3
Maximale Verfahrgeschwindigkeit	m /min	300
Zulässige dynamische Betriebslast	N	210
Hub pro Umdrehung	mm	75 ^{+0,1}
Leerlaufdrehmoment	Nm	0,2
Maximales Antriebsmoment	Nm	2,5
Trägheitsmoment ¹	Kgcm ²	0,16
Flächenträgheitsmoment (Profil) l _y	cm ⁴	9,521
Flächenträgheitsmoment (Profil) I _z	cm ⁴	12,14
Maximale Gesamtlänge	mm	1 020
Wiederholgenauigkeit	mm	0,08

¹⁻ Trägheitsmoment ohne Getriebe


Abmessungen und Massen


Тур	ID - Nummer	Verfahrweg S [mm]	Gesamtlänge L [mm]	Masse [kg]
AXE40A10-B-0040	450048	0040	220	2,1
AXE40A10-B-0060	450050	0060	240	2,2
AXE40A10-B-0080	450051	0080	260	2,3
AXE40A10-B-0120	450052	0120	300	2,5
AXE40A10-B-0160	450053	0160	340	2,8
AXE40A10-B-0200	450054	0200	380	3,0
AXE40A10-B-0240	450056	0240	420	3,2
AXE40A10-B-0280	450057	0280	460	3,5
AXE40A10-B-0320	450058	0320	500	3,7
AXE40A10-B-0360	450059	0360	540	4,0
AXE40A10-B-0400	450062	0400	580	4,2
AXE40A10-B-0440	450063	0440	620	4,4
AXE40A10-B-0480	450064	0480	660	4,7
AXE40A10-B-0520	450065	0520	700	4,9
AXE40A10-B-0560	450067	0560	740	5,1
AXE40A10-B-0600	450068	0600	780	5,4
AXE40A10-B-0640	450069	0640	820	5,6
AXE40A10-B-0680	450070	0680	860	5,9
AXE40A10-B-0720	450071	0720	900	6,1
AXE40A10-B-0760	450072	0760	940	6,3
AXE40A10-B-0800	450073	0800	980	6,6
AXE40A10-B-0840	450074	0840	1020	6,8



AXE60A

Schmiermöglichkeit beidseitig

T = Tischlänge

S = Verfahrweg

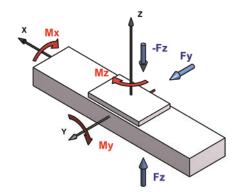
L = T + S + 104 mm

Führungssystem		Linearführung B
Tischlänge T	mm	200
Antriebselement		Zahnriemen 25AT5
Maximale Verfahrgeschwindigkeit	m /min	300
Zulässige dynamische Betriebslast	N	560
Hub pro Umdrehung	mm	150+0,3
Leerlaufdrehmoment	Nm	0,8
Maximales Antriebsmoment	Nm	13,4
Trägheitsmoment ¹	Kgcm ²	1,07
Flächenträgheitsmoment (Profil) I _y	cm ⁴	40,04
Flächenträgheitsmoment (Profil) I _z	cm ⁴	60,64
Maximale Gesamtlänge	mm	3 868
Wiederholgenauigkeit	mm	0,05

^{1 -} Trägheitsmoment ohne Getriebe

Abmessungen und Massen

Тур	ID - Nummer	Verfahrweg S [mm]	Gesamtlänge L [mm]	Masse [kg]
AXE60A14-B-0040	450154	0040	328	4,5
AXE60A14-B-0100	450155	0100	388	4,8
AXE60A14-B-0160	450156	0160	448	5,1
AXE60A14-B-0220	450157	0220	508	5,4
AXE60A14-B-0280	450160	0280	568	5,7
AXE60A14-B-0340	450161	0340	628	6,0
AXE60A14-B-0400	450163	0400	688	6,3
AXE60A14-B-0460	450164	0460	748	6,5
AXE60A14-B-0520	450166	0520	808	6,8
AXE60A14-B-0580	450197	0580	868	7,1
AXE60A14-B-0640	450198	0640	928	7,4
AXE60A14-B-0700	450199	0700	988	7,7
AXE60A14-B-0760	450200	0760	1048	8,0
AXE60A14-B-0820	450201	0820	1108	8,3
AXE60A14-B-0880	450202	0880	1168	8,6
AXE60A14-B-0940	450203	0940	1228	8,9
AXE60A14-B-1000	450204	1000	1288	9,2
AXE60A14-B-1060	450206	1060	1348	9,5
AXE60A14-B-1120	450207	1120	1408	9,8
AXE60A14-B-1180	450208	1180	1468	10,1
AXE60A14-B-1240	450209	1240	1528	10,4
AXE60A14-B-1300	450210	1300	1588	10,7
AXE60A14-B-1360	450211	1360	1648	11,0
AXE60A14-B-1420	450212	1420	1708	11,3
AXE60A14-B-1480	450213	1480	1768	11,6
AXE60A14-B-1540	450214	1540	1828	11,9
AXE60A14-B-1600	450215	1600	1888	12,2
AXE60A14-B-1660	450216	1660	1948	12,5
AXE60A14-B-1720	450219	1720	2008	12,7
AXE60A14-B-1780	450220	1780	2068	13,0
AXE60A14-B-1900	450221	1900	2188	13,6
AXE60A14-B-2020	450222	2020	2308	14,2
AXE60A14-B-2140	450223	2140	2428	14,7
AXE60A14-B-2260	450225	2260	2548	15,3
AXE60A14-B-2380	450226	2380	2668	15,9
AXE60A14-B-2500	450228	2500	2788	16,5
AXE60A14-B-2620	450230	2620	2908	17,1
AXE60A14-B-2740	450231	2740	3028	17,7
AXE60A14-B-2860	450232	2860	3148	18,3
AXE60A14-B-3100	450233	3100	3388	19,4
AXE60A14-B-3340	450234	3340	3628	20,6
AXE60A14-B-3580	450235	3580	3868	21,8


5.3.3 **Maximale statische Belastbarkeit**

Тур	Führungssystem	La [N	ust V]	Lastmoment [Nm]				
		F _y	F _z	M _x	M_{y}	M_z		
AXE40A	В	900	900	4,2	36	36		
AXE60A	В	9 650	9 650	66	350	350		

Dynamische Tragfähigkeit 5.3.4

Die dynamischen Belastbarkeiten der Führungssysteme basieren auf einer nominellen Lebensdauer von 50 000 km.

Тур	Führungssystem	La [1	ast V]	Lastmoment [Nm]			
		F _y	F _z	M _x	M_{y}	M_z	
AXE40A	В	500	500	2,4	20	20	
AXE60A	В	2 800	2 800	19	100	100	

6. Zubehör

6.1 Befestigungs- und Verbindungselemente

Für die Montage von SNR - Linearachsen der Baureihe AXE steht ein optimal aufeinander abgestimmtes Programm an Befestigungselementen zur Verfügung. Nutensteine und Befestigungsleisten sowie ein umfangreiches Programm an Verbindungselementen bieten vielfältigste Möglichkeiten die Achsen auf Montageflächen zu befestigen oder miteinander zu kombinieren.

Als Befestigungs- und Verbindungselemente stehen folgende Komponenten zur Verfügung:

- Befestigungsleisten
- Nutensteine
- Direktverbindungen
- Kreuzverbindungen
- Portalverbindungen
- A –Standardverbindungen
- Winkelverbindungen

6.1.1. Befestigungsleisten

Für Linearachsen der Baureihen AXE stehen passende Befestigungsleisten (Bild 6.1) zur Verfügung.

Der Abstand der Befestigungspunkte ist von der Last, der gewünschten Geradheit sowie Steifigkeit zu wählen. Die Abmessungen und Bezeichnungen inklusive der Ident-Nummern sind in Bild 6.2 und Tabelle 6.1 dargestellt.

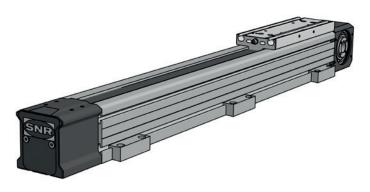


Bild 6.1 _____ Linearachse AXE mit Befestigungsleisten

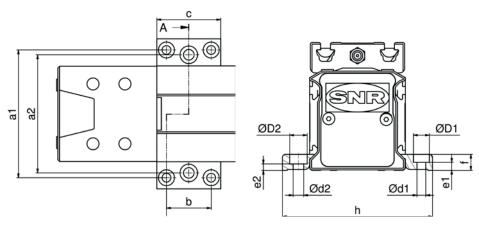


Bild 6.2 _____ Abmessungen Befestigungsleisten AXE

Tabelle 6.1 __ Befestigungsleisten AXE

Тур	Bezeichnung	ID - Nummer	a1	a2	b	С	d1	D1	e1	d2	D2	e2	f	g	h
				[mm]	[mm]	[mm]	[mm]								[mm]
AXE40	AX-AC-FST-40x13-2	108663	55		28	40	5,5	10	7,0				13	38	66
AXE601	AX-AC-FST-40x10-3	108579	80	74	28	40	5,5	10	5,0	6,6	11	4	10	48	94
AXE80	AX-AC-FST-70x20-2	108075	94		50	70	6,6	11	14,0				20	76	108
AXE100	AX-AC-FST-78x22-2	110236	116		60	78	9,0	15	11,5				22	108	140
AXE110	AX-AC-FST-47x7-2	150822	126		30	47	5,5	9	3,5				7	69	140
AXE160	AX-AC-FST-68x9-2	150999	174		50	68	6,5	11	3,5				9	88	188

¹⁻ auch geeignet für Standard – Maschinenbau – Profile mit Rastermaß 20

6.1.2. **Nutensteine**

Verschiedene Nutensteine (Bild 6.3) sind für Linearachsen der Baureihen AXE auswählbar.

Der Abstand der Befestigungspunkte ist von der Last und der gewünschten Geradheit sowie Steifigkeit zu wählen. Nutensteine sind in zwei Bauformen verfügbar. Die Abmessungen und Bezeichnungen inklusive der Ident – Nummern der Nutensteine sind in Bild 6.4 und Tabelle 6.2 dargestellt.

Bauform E / F

- Standardnutenstein
- Stahl verzinkt (teilweise Edelstahl A2 möglich)
- einschwenkbar in beliebige Position
- fixiert über federnde Kugel

Bauform R

- für effektive Bauteilmontage
- Zinkdruckguss
- wird am Bauteil vormontiert und in beliebiger Position eingesetzt
- verriegelt sich durch Anziehen der Schraube

Bild 6.3 _____ Bauformen von Nutensteinen

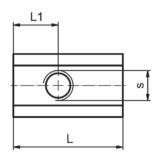


Bild 6.4 _____ Abmessungen Nutensteine

Tabelle 6.2 __ Nutensteine

Тур	Bezeichnung	ID - Nummer	Bauform	S	L1	L1 ¹	TA2	max. Zugkraft
					[mm]	[mm]	[mm]	[N]
	AX-AC-SBL-5ST-M3-E	109066	Е	M3	12	3,0	1,5	500
	AX-AC-SBL-5ST-M4-E	109073	E	M4	12	4,0	3,0	500
AXE40Z	AX-AC-SBL-5ST-M4-E-A2	289073	E	M4	12	4,0	3,0	500
AXE60Z	AX-AC-SBL-5ST-M5-E	109070	E	M5	12	4,0	4,5	500
	AX-AC-SBL-5ST-M5-E-A2	139275	Е	M5	12	4,0	4,5	500
	AX-AC-SBL-5-M3-R-Zi	103758	R	M3	5	2,5	1,0	50
	AX-AC-SBL-6ST-M4-E	109094	Е	M4	17	5,0	4,0	1 750
	AX-AC-SBL-6ST-M5-E	109093	Е	M5	17	5,0	8,03	1 750
AXE80Z	AX-AC-SBL-6ST-M6-E	109091	Е	M6	17	5,5	14,0 ³	1 750
	AX-AC-SBL-6ST-M6-E-A2	203392	Е	M6	17	5,5	14,03	1 750
	AX-AC-SBL-6-M4-R-Zi	103759	R	M4	15	7,5	1,5	150
	AX-AC-SBL-6ST-M4-F	255069	F	M4	16	8,0	4,03	1 750
AXE100Z (Nut seitlich oben)	AX-AC-SBL-6ST-M5-F	353280	F	M5	16	8,0	8,03	1 750
(Nat solution oboti)	AX-AC-SBL-6ST-M6-F	255070	F	M6	16	8,0	14,03	1 750
AXE100Z	AX-AC-SBL-8ST-M5-F	258785	F	M5	22	7,0	8,03	2 500
(Nut unten und seitlich	AX-AC-SBL-8ST-M6-F	183942	F	M6	22	7,0	14,0 ³	2 500
unten)	AX-AC-SBL-8ST-M8-F	149812	F	M8	22	7,0	25,0	2 500

¹ Maximalwerte, abweichende Abmessungen möglich

²-Maximales Anzugsmoment

³-Maximales Anzugsmoment gilt nur für Schrauben der Festigkeitsklasse 10.9

6.1.3 Direktverbindung

Direktverbindungen (Bild 6.5) sind Verbindungssets, die alle erforderlichen Verbindungselemente wie z.B. Adapterplatten, Befestigungsleisten, Schrauben,...beinhalten.

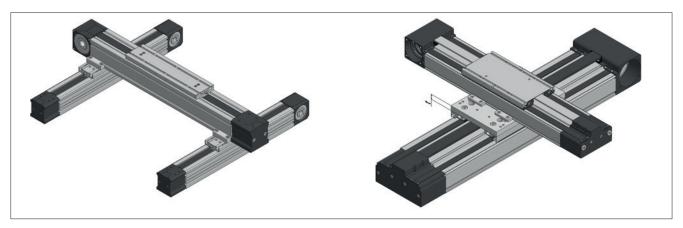


Bild 6.5 _____ Direktverbindung AXE

Die Bezeichnungen und Ident – Nummern der Direktverbindungen sind in Tabelle 6.3 dargestellt.

Tabelle 6.3 __ Direktverbindung AXE

			Υ -	Achse		
		AXE60Z	AXE80Z	AXE100Z	AXE110Z	AXE160Z
ı	AXE60Z	2x AX-AC-DCU-60-60 (ID 230147)			AX-AC-DCU-60-110 (ID 173421)	
Achse	AXE80Z			AX-AC-DCU-80-120 (ID 207896)		AX-AC-DCU-80-160 (ID 167332)
A - X				AX-AC-DCU-80-120 (ID 207896)		AX-AC-DCU-80-160 (ID 167332)
	AXE110Z	AX-AC-DCU-110-60 ¹ (ID 281274)			AX-AC-DCU-110-110 (ID 207936)	
	AXE160Z ²	AX-AC-DCU-160-60 (ID 382288)	AX-AC-DCU-160-80 (ID 288848)		AX-AC-DCU-160-110 (ID 357642)	AX-AC-DCU-160-160 (ID 308879)

¹-Zwischenplatte t = 12 mm

 $^{^{2}}$ Zwischenplatte t = 15 mm

6.1.4 Kreuzverbindung

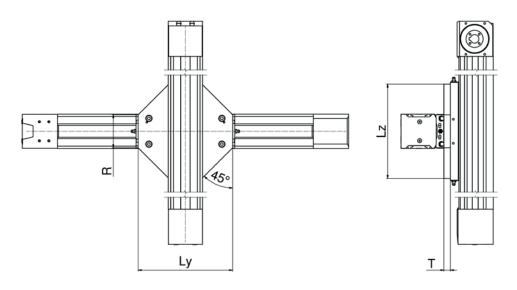

Kreuzverbindungen (Bild 6.6) sind Verbindungselemente zum Aufbau von Zwei -Achssystemen, bei denen die Tischplatten der jeweiligen Achsen aufeinander montiert werden. Die Kreuzverbindungen enthalten alle erforderlichen Verbindungselemente inklusive der Schrauben.

Bild 6.6_ Kreuzverbindung AXE

1 Ausrichtung mittels Zylinderstift oder Anschlagkante

Die Bezeichnungen und Abmessungen inklusive der Ident – Nummern der Kreuzverbindungen sind in Bild 6.7 und Tabelle 6.4 dargestellt.

- Achsmittelachse = Mitte Schlittenplatte
- 2 Montageseiten der Schalter für die Y Achse bei Typ AXE60 beachten

Bild 6.7 _____ Kreuzverbindung AXE

Tabelle 6.4 __ Kreuzverbindung AXE

X - Achse	Y - Achse	Typenschlüssel	ID - Nummer	Ly	Lz [mm]	R [mm]	T [mm]
AXE60Z	AXE60Z	AX-AC-CCU-60-60	160635	90	90	58	12
AVE007	AXE60Z	AX-AC-CCU-80-60	158840	190	180	47	11
AXE80Z	AXE100Z	AX-AC-CCU-80-80	253556	220	220	77	15
AXE110Z	AXE60Z	AX-AC-CCU-110-60	252539	215	120		12
AXE160Z	AXE60Z	AX-AC-CCU-160-60	265455	240	160		15
ANETOUZ	AXE110Z	AX-AC-CCU-160-80	169160	220	200		20
AXE160Z	AXE110Z	AX-AC-CCU-110-110	259405	215	120		12
AXE110Z	AXE110Z	AX-AC-CCU-160-110	351593	240	160		15
ANLITUZ	AXE160Z	AX-AC-CCU-160-160	264974	240	160		15

6.1.5 Portalverbindung

Portalverbindungen sind Verbindungselemente zum Aufbau von X-Y-Achssystemen aus Linearachsen der Baureihen AXC und AXDL (Bild 6.14), bei denen die Y-Achse um 90° gekippt montiert wird. Die Portalverbindungen enthalten alle erforderlichen Verbindungselemente inklusive der Schrauben.

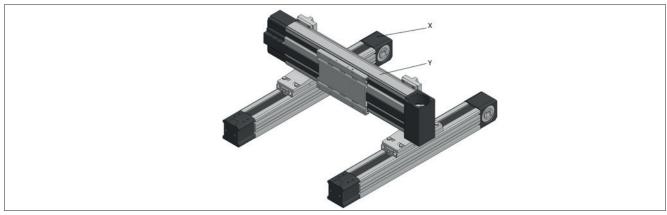


Bild 6.8 _____ Portalverbindung AXE

Die Bezeichnungen und Abmessungen inklusive der Ident – Nummern der Portalverbindungen sind in Bild 6.9 und Tabelle 6.5 dargestellt.

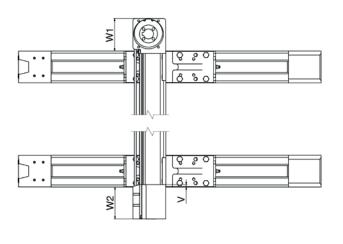
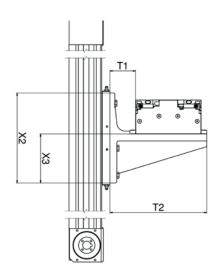
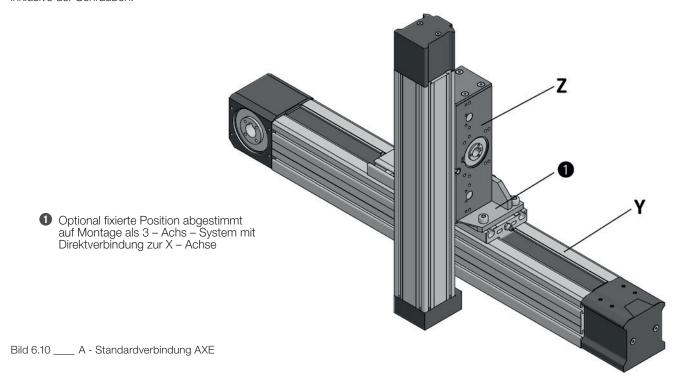


Bild 6.9 _____ Portalverbindung AXE




Tabelle 6.5 __ Portalverbindung AXE

X - Achse	Y - Achse	Typenschlüssel	ID - Nummer	T1	T2	V	W1	W2	X2	ХЗ	Y3
					[mm]						
AVEC07	AXE110Z	AX-AC-GCU-60-110	230361	49	174	5,5	62,5	64,5	160	90	58
AXE60Z	AXE160Z	AX-AC-GCU-60-160	265454	63	237	5,0	92,0	90,0	220	120	78
AXE80Z	AXE160Z	AX-AC-GCU-80-160	169154	63	237	5,0	82,0	80,0	220	120	78
AXE100Z	AXE160Z	AX-AC-GCU-80-160	169154	63	237	5,0	72,0	70,0	220	120	78

6.1.6 A - Standardverbindung

A - Standardverbindungen sind Verbindungselemente zur Kombination von Linearachsen der Baureihen AXE_Z mit Zahnriemenantrieb $und\ AXE_A\ mit\ Zahnriemen\ -\ \Omega-Antrieb\ (Bild\ 6.10).\ Die\ A\ -\ Standardverbindungen\ enthalten\ \ alle\ erforderlichen\ Verbindungselemente$ inklusive der Schrauben.

Die Bezeichnungen und Abmessungen inklusive der Ident - Nummern der A - Standardverbindungen sind in Bild 6.11 und Tabelle 6.6 dargestellt.

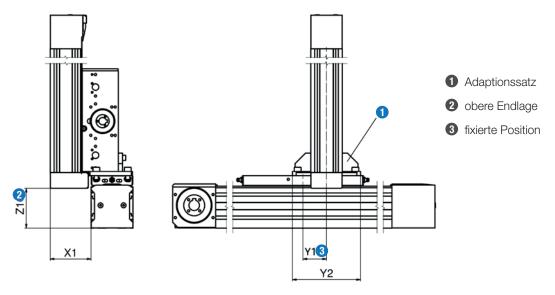


Bild 6.11 ____ A - Standardverbindung AXE

Tabelle 6.6 __ A - Standardverbindung AXE

Y - Achse	Z - Achse	Typenschlüssel	ID - Nummer	X1	Y1	Y2	Z1
							[mm]
AXE60Z	AXE40A	AX-AC-SCU-60-40	299881	61	0	120	60
AXE80Z	AXE60A	AX-AC-SCU-80-60	156300	78	45	130	64
AVE1107	AXE40A	AX-AC-SCU-110-40	327403	61	0	132	43
AXE110Z	AXE60A	AX-AC-SCU-110-60	268606	90	0/18	130	29
AXE160Z	AXE60A	AX-AC-SCU-160-60	458059	75	0	150	51

6.1.7 Winkelverbindung

Winkelverbindungen bieten vielfältige Möglichkeiten zur Kombination der Linearachsen AXE110Z und AXE160Z zu 2 - Achs - Systemen in X - Y - oder Y - Z - Anordnung (Bild 6.12 bis 6.15). Es sind Kombinationen von Linearachsen gleicher Baugröße und einem Unterschied von einer Baugröße möglich. Die Verbindungselemente sind aus Aluminiumsandguss (EN AC-AlSi7Mg0,3 ST6) gefertigt. Die Winkelverbindungen enthalten alle erforderlichen Verbindungselemente inklusive der Schrauben.

Die Bezeichnungen und Abmessungen inklusive der Ident -Nummern der Winkelverbindungen sind in Bildern 6.12 bis 6.15 und Tabelle 6.7 bis 6.10 dargestellt.

X – Y – Achs – System, Profilmontage

Bild 6.12 Winkelverbindung X – Y – Achs – System, Profilmontage

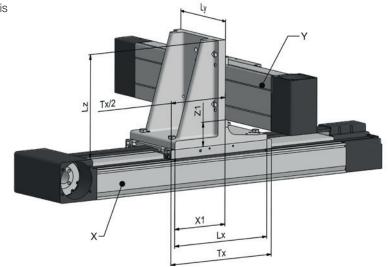


Tabelle 6.7 __ Winkelverbindung X - Y - Achs - System, Profilmontage

X - Achse	Y - Achse	Typenschlüssel	ID - Nummer	Lx	X1	Ly	Z1	Lz
					[mm]	[mm]	[mm]	[mm]
AXE110	AXE110	AX-AC-ACU-X110-Y110	459876	160	90	156	49,0	209
AXE160	AXE110	AX-AC-ACU-X160-Y110P	286227	160	90	156	49,0	209
AXE160	AXE160	AX-AC-ACU-X160-Y160	306559	220	120	236	63,0	287

X – Y – Achs – System, Tischmontage

Bild 6.13 Winkelverbindung X - Y - Achs - System, Tischmontage

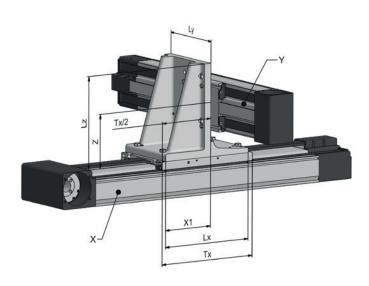


Tabelle 6.8 __ Winkelverbindung X - Y - Achs - System, Tischmontage

X - Achse	Y - Achse	Typenschlüssel	ID - Nummer	Lx	X1	Ly	Z	Lz
					[mm]	[mm]	[mm]	[mm]
AXE110	AXE110	AX-AC-ACU-110-110	382293	160	90	156	114,0	209
AXE160	AXE110	AX-AC-ACU-X160-Y110T	382295	160	90	156	114,0	209
AXE160	AXE160	AX-AC-ACU-160-160-2	306666	220	120	236	144,0	287

Y – Z – Achs – System, Profilmontage

Y Z

Bild 6.14 ____ Winkelverbindung Y – Z – Achs – System, Profilmontage

Tabelle 6.9 __ Winkelverbindung Y - Z - Achs - System, Profilmontage

Y - Achse	Z - Achse	Bezeichnung	ID - Nummer	Lx	Х	Ly	Lz	Z
					[mm]	[mm]	[mm]	[mm]
AXE110	AXE110	AX-AC-ACU-Y110-Z110	363425	209	114,0	156	160	90
AXE160	AXE110	AX-AC-ACU-Y160-Z110P	269049	209	130,0	156	160	90
AXE160	AXE160	AX-AC-ACU-Y160-Z160	373108	287	144,0	236	220	120

Y – Z – Achs – System, Tischmontage

Bild 6.15 ____ Winkelverbindung Y – Z – Achs – System, Tischmontage

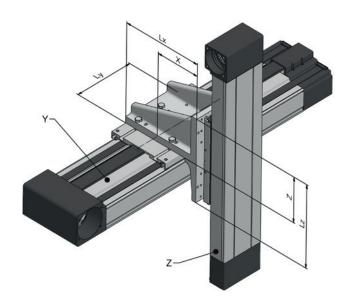
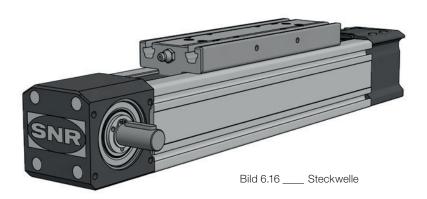


Tabelle 6.10 $_$ Winkelverbindung Y – Z – Achs – System, Tischmontage


Y - Achse	Z - Achse	Bezeichnung	ID - Nummer	Lx	Х	Ly	Lz	Z
						[mm]		[mm]
AXE110	AXE110	AX-AC-ACU-110-110	382293	209	114,0	156	160	90
AXE160	AXE110	AX-AC-ACU-Y160-Z110T	267710	209	130,0	156	160	90
AXE160	AXE160	AX-AC-ACU-160-160-2	306666	287	144,0	236	220	120

Antriebsoptionen 6.2

6.2.1 **Steckwellen**

Steckwellen sind eine gebräuchliche Variante der formschlüssigen Antriebsadaption (Bild 6.16), die für Linearachsen der Baureihen AXE verfügbar ist.

Die Abmessungen sind in Bild 6.17 und Tabelle 6.11 zusammengefasst. Für Anwendungen mit höherer Dynamik empfehlen wir Kraft - Formschlüssige Antriebsadaptionen über integrierte Kupplungen entsprechend Kapitel 6.2.2 oder 6.2.4.

Die Abmessungen der Steckwellen sind in Bild 6.17 und Tabelle 6.11 dargestellt.

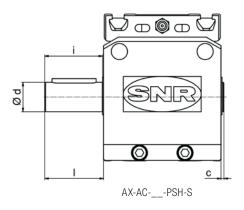


Bild 6.17 ____ Abmessungen und Anbaumaße der Steckwellen

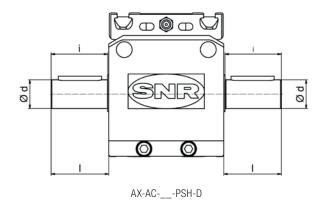
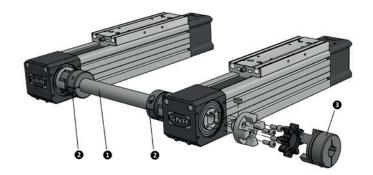


Tabelle 6.11 _ Abmessungen Steckwelle


Тур	Typenschlüssel	ID-Nummer	С	d h6	i	ı
AXE40A	AX-AC-40ZA-PSH-S	156270	1	10	29,5	30
AXE60Z AXE60A	AX-AC-60ZA-PSH-S	187407	1	14	30,0	30
AXE80Z	AX-AC-80ZA-PSH-S	152373	2	20	39,3	40
AXE100Z	AX-AC-100Z-PSH-S	409634		25	53,5	50
AXE110Z	AX-AC-110Z-PSH-S	308746		16	55,5	30
AXE160Z	AX-AC-160Z-PSH-S	206005		25	92,3	50
AXE40A	AX-AC-40ZA-PSH-D	449876		10	29,5	30
AXE60Z AXE60A	AX-AC-60ZA-PSH-D	189202		14	30,0	30
AXE80Z	AX-AC-80ZA-PSH-D	153960		20	39,3	40
AXE100Z	AX-AC-100Z-PSH-D	409633		25	53,5	50

6.2.2 Kupplungen und Verbindungswellen

Parallel angeordnete Linearachsen können über eine Verbindungswelle (Bild 6.18) gekoppelt werden. Das notwendige Antriebsmoment wird dabei auf alle Achsen gleichmäßig verteilt. Als Verbindungswellen werden galvanisch verzinkte Hohlwellen eingesetzt. Bei Linearachsen der Baureihe AXE ist darüber hinaus eine nachträgliche Montage und Demontage der Verbindungswelle durch den Einsatz von Kupplungen mit Halbschalenklemmnaben möglich. Die Verwendung dieser Kupplungen an der Verbindungswelle ermöglicht eine exakte Justierung der Linearachsen. Eine komplette Achsverbindung besteht dabei aus einem Kupplungssatz (Tabelle 6.12) und der Verbindungswelle (Tabelle 6.13 bis 6.15).

Zur Adaption des Antriebs stehen Kupplungen mit Klemmnabe für Antriebe mit Passfederwelle zur Verfügung

- 1 Verbindungswelle
- 2 Kupplung mit Halbschalenklemmnabe
- 3 Kupplung mit Klemmnabe für Antriebe mit Passfeder

Bild 6.18 ____ Anordnung Kupplungen und Verbindungswelle

Die Abmessungen der Verbindungswellen sind in Bild 6.19 und Tabelle 6.12 dargestellt.

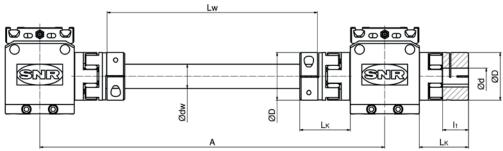
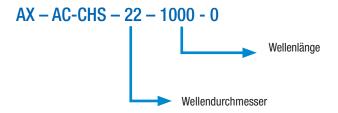


Bild 6.19 ____ Abmessungen Kupplungen und Verbindungswelle

Tabelle 6.12 _ Abmessungen Kupplungen und Verbindungswelle


Typenschlüssel	ID-Nummer						Typenschlüssel	ID-Nummer		Verbi	ndungswell	le	
Klemmnaben - Kupplung		D	LK			TA ²	Kupplungssatz		dw	(Wandstärke)	Lw	A min. 1	TA ²
			[mm]	[mm]	[mm]	[Nm]						[mm]	[Nm]
AX-AC-60ZA-COU-K-10	233232				10								
		40	F0.0	05.0		400	AX-AC-60Z-	000070	00	0.0	4 405	100	0.0
		40	50,0	25,0	_	10,0	COU-CHS-22	292876	22	2,0	A - 125	160	6,0
	_	55	59,0	30,0		10,0		153844	28	2,5	A - 153	198	10,0
					-		CUU-CH3-20						
					-								
					-								
					-								
		CE	01.0	25.0		05.0	AX-AC-100Z-	004101	20	4.0	A 170	000	05.0
	· ·	60	61,0	35,0	-	25,0	COU-CHS-38	284121	38	4,0	A - 1/2	222	25,0
		55	32,5	30,0		10,0			ent	fällt			
					-								
		65	22.5	35.0		25.0			ant	fällt			
		00	22,0	33,0		23,0			GIIL	ιαπι			
	Klemmnaben - Kupplung	AX-AC-60ZA-C0U-K-10 AX-AC-60ZA-C0U-K-14 AX-AC-60ZA-C0U-K-14 AX-AC-60ZA-C0U-K-16 AX-AC-60ZA-C0U-K-19 AX-AC-60ZA-C0U-K-19 AX-AC-60ZA-C0U-K-20 AX-AC-80ZA-C0U-K-12 AX-AC-80ZA-C0U-K-14 AX-AC-80ZA-C0U-K-14 AX-AC-80ZA-C0U-K-16 AX-AC-80ZA-C0U-K-16 AX-AC-80ZA-C0U-K-19 AX-AC-80ZA-C0U-K-19 AX-AC-80ZA-C0U-K-20 AX-AC-80ZA-C0U-K-20 AX-AC-80ZA-C0U-K-20 AX-AC-80ZA-C0U-K-20 AX-AC-100Z-C0U-K-22 AX-AC-100Z-C0U-K-22 AX-AC-100Z-C0U-K-23 AX-AC-100Z-C0U-K-24 AX-AC-100Z-C0U-K-25 AX-AC-110Z-C0U-K-20	AX-AC-60ZA-C0U-K-10 233232 AX-AC-60ZA-C0U-K-14 188209 AX-AC-60ZA-C0U-K-16 230511 40 AX-AC-60ZA-C0U-K-19 188958 AX-AC-60ZA-C0U-K-20 185644 AX-AC-80ZA-C0U-K-12 257591 AX-AC-80ZA-C0U-K-14 251343 AX-AC-80ZA-C0U-K-16 187181 AX-AC-80ZA-C0U-K-16 187181 AX-AC-80ZA-C0U-K-19 251662 AX-AC-80ZA-C0U-K-20 151341 AX-AC-80ZA-C0U-K-20 151341 AX-AC-80ZA-C0U-K-20 151341 AX-AC-80ZA-C0U-K-20 auf Anfrage AX-AC-100Z-C0U-K-20 auf Anfrage AX-AC-110Z-C0U-K-20 409353 AX-AC-110Z-C0U-K-20 409354 AX-AC-110Z-C0U-K-20 409355 AX-AC-110Z-C0U-K-20 409355 AX-AC-110Z-C0U-K-20 409355 AX-AC-110Z-C0U-K-20 409355 AX-AC-110Z-C0U-K-20 251324 AX-AC-160Z-C0U-K-20 251324 AX-AC-160Z-C0U-K-20 AV-AC-160Z-C0U-K-20 AV-AC-	AX-AC-60ZA-COU-K-10 233232 AX-AC-60ZA-COU-K-14 188209 AX-AC-60ZA-COU-K-16 230511 40 50,0 AX-AC-60ZA-COU-K-19 188958 AX-AC-60ZA-COU-K-19 185644 AX-AC-80ZA-COU-K-12 257591 AX-AC-80ZA-COU-K-12 257591 AX-AC-80ZA-COU-K-14 251343 AX-AC-80ZA-COU-K-16 187181 AX-AC-80ZA-COU-K-16 187181 AX-AC-80ZA-COU-K-19 251662 AX-AC-80ZA-COU-K-19 251662 AX-AC-80ZA-COU-K-20 151341 AX-AC-80ZA-COU-K-20 151341 AX-AC-80ZA-COU-K-20 140426 AX-AC-100Z-COU-K-22 247474 AX-AC-80ZA-COU-K-22 247474 AX-AC-80ZA-COU-K-22 auf Anfrage AX-AC-100Z-COU-K-25 auf Anfrage AX-AC-100Z-COU-K-26 auf Anfrage AX-AC-100Z-COU-K-30 auf Anfrage AX-AC-110Z-COU-K-30 auf Anfrage AX-AC-110Z-COU-K-20 409354 AX-AC-110Z-COU-K-20 409354 AX-AC-110Z-COU-K-20 409355 AX-AC-110Z-COU-K-25 auf Anfrage AX-AC-110Z-COU-K-20 409354 AX-AC-110Z-COU-K-20 409355 AX-AC-110Z-COU-K-20 409354 AX-AC-110Z-COU-K-20 409355 AX-AC-110Z-COU-K-20 251324 AX-AC-160Z-COU-K-20 251324 AX-AC-160Z-COU-K-20 238803 AX-AC-160Z-COU-K-20 238803 AX-AC-160Z-COU-K-20 238803 AX-AC-160Z-COU-K-20 AX-AC-160Z-COU-K-30 AX-AC-160Z-COU-	AX-AC-60ZA-COU-K-10 233232 AX-AC-60ZA-COU-K-14 188209 AX-AC-60ZA-COU-K-16 230511 40 50,0 25,0 AX-AC-60ZA-COU-K-19 188958 AX-AC-60ZA-COU-K-20 185644 AX-AC-80ZA-COU-K-12 257591 AX-AC-80ZA-COU-K-14 251343 AX-AC-80ZA-COU-K-16 187181 AX-AC-80ZA-COU-K-18 171476 AX-AC-80ZA-COU-K-19 251662 AX-AC-80ZA-COU-K-20 151341 AX-AC-80ZA-COU-K-20 151341 AX-AC-80ZA-COU-K-22 247474 AX-AC-80ZA-COU-K-22 247474 AX-AC-80ZA-COU-K-22 auf Anfrage AX-AC-100Z-COU-K-25 auf Anfrage AX-AC-100Z-COU-K-25 auf Anfrage AX-AC-100Z-COU-K-30 auf Anfrage AX-AC-100Z-COU-K-30 auf Anfrage AX-AC-110Z-COU-K-20 409353 AX-AC-110Z-COU-K-20 409354 AX-AC-110Z-COU-K-20 409354 AX-AC-110Z-COU-K-22 409355 AX-AC-110Z-COU-K-25 auf Anfrage AX-AC-110Z-COU-K-25 auf Anfrage AX-AC-110Z-COU-K-25 auf Anfrage AX-AC-110Z-COU-K-25 auf Anfrage AX-AC-110Z-COU-K-20 409354 AX-AC-110Z-COU-K-20 409354 AX-AC-110Z-COU-K-25 auf Anfrage A	AX-AC-60ZA-COU-K-10 233232 10 10 14 14 15 17 17 18 17 18 18 17 18 18	Name	Name	AX-AC-60ZA-COU-K-10 AX-AC-60ZA-COU-K-14 188209 AX-AC-60ZA-COU-K-16 230511 AV-AC-60ZA-COU-K-19 188958 AX-AC-60ZA-COU-K-20 185644 AX-AC-80ZA-COU-K-12 257591 AX-AC-80ZA-COU-K-16 187181 AX-AC-80ZA-COU-K-18 171476 AX-AC-80ZA-COU-K-19 251662 AX-AC-80ZA-COU-K-20 151341 AX-AC-80ZA-COU-K-20 151341 AX-AC-80ZA-COU-K-20 151341 AX-AC-80ZA-COU-K-20 AX-AC-80ZA-COU-K-20 AX-AC-80ZA-COU-K-20 AX-AC-80ZA-COU-K-18 171476 AX-AC-80ZA-COU-K-20 AX-AC-80ZA-COU-K-20 AX-AC-80ZA-COU-K-20 AX-AC-80ZA-COU-K-20 AX-AC-80ZA-COU-K-20 AX-AC-80ZA-COU-K-20 AX-AC-80ZA-COU-K-20 AX-AC-80ZA-COU-K-20 AX-AC-100Z-COU-K-20 auf Anfrage AX-AC-100Z-COU-K-20 AV-AC-100Z-COU-K-20 AV-AC-100Z-COU-K-20 AV-AC-100Z-COU-K-20 AV-AC-100Z-COU-K-20 AV-AC-100Z-COU-K-20 AV-AC-10Z-COU-K-20 AV-AC-10Z-COU-K-22 AV-AC-10Z-	D	AX-AC-60ZA-COU-K-10 AX-AC-60ZA-COU-K-11 188209 AX-AC-60ZA-COU-K-12 188548 AX-AC-60ZA-COU-K-13 188548 AX-AC-60ZA-COU-K-14 188548 AX-AC-60ZA-COU-K-15 188544 AX-AC-80ZA-COU-K-16 187181 AX-AC-80ZA-COU-K-16 187181 AX-AC-80ZA-COU-K-16 187181 AX-AC-80ZA-COU-K-16 187181 AX-AC-80ZA-COU-K-19 251662 AX-AC-80ZA-COU-K-20 151341 AX-AC-80ZA-COU-K-20 151341 AX-AC-80ZA-COU-K-20 151341 AX-AC-80ZA-COU-K-20 AX-AC-100Z-COU-K-20 AX-AC-100Z-COU-K-20 AX-AC-100Z-COU-K-30 AX-AC-100Z-COU-K-30 AX-AC-100Z-COU-K-30 AX-AC-110Z-COU-K-20 AV-AC-110Z-COU-K-20 AV-AC-10Z-COU-K-20 AV-AC-10Z-COU-K-20 AV-AC-10Z-COU-K-20 AV-AC-10Z-COU-K-20 AV-AC-10Z-COU-K-20 AV-AC-10Z-COU-K-20	Name	Name

¹⁻ Minimalmaß, das den Ausbau ohne Demontage der Linearachsen ermöglicht

²⁻ Anzugsmoment

Für AXE – Standardachssysteme sind die entsprechenden Verbindungswellen in den Tabellen 6.13 und 6.14 sowie für die Verbindung von Linearachsen AXE100 in Tabelle 6.15 inklusive der ID – Nummern zusammengefasst.

Tabelle 6.14 _ Verbindungswellen für AXE60

Hub der Y-Achse (AXE110Z)	Typenschlüssel Verbindungswelle	ID-Nummer	Mittenabstand A der X-Achsen	Wellenlänge L	Masse
				[mm]	[kg]
200	AX-AC-CHS-22-0245-0	461314	370	245	0,24
260	AX-AC-CHS-22-0305-0	461313	430	305	0,30
320	AX-AC-CHS-22-0365-0	461312	490	365	0,36
380	AX-AC-CHS-22-0425-0	461311	550	425	0,42
440	AX-AC-CHS-22-0485-0	461310	610	485	0,48
500	AX-AC-CHS-22-0545-0	461309	670	545	0,54
560	AX-AC-CHS-22-0605-0	461307	730	605	0,60
620	AX-AC-CHS-22-0665-0	461306	790	665	0,66
680	AX-AC-CHS-22-0725-0	461305	850	725	0,71
740	AX-AC-CHS-22-0785-0	461304	910	785	0,77
800	AX-AC-CHS-22-0845-0	461303	970	845	0,83
860	AX-AC-CHS-22-0905-0	461302	1030	905	0,89
920	AX-AC-CHS-22-0965-0	461301	1090	965	0,95
980	AX-AC-CHS-22-1025-0	381828	1150	1025	1,01
1040	AX-AC-CHS-22-1085-0	461300	1210	1085	1,07
1100	AX-AC-CHS-22-1145-0	461299	1270	1145	1,13
1160	AX-AC-CHS-22-1205-0	461176	1330	1205	1,19
1220	AX-AC-CHS-22-1265-0	461175	1390	1265	1,25
1280	AX-AC-CHS-22-1325-0	461174	1450	1325	1,31
1340	AX-AC-CHS-22-1385-0	461173	1510	1385	1,37
1400	AX-AC-CHS-22-1445-0	461172	1570	1445	1,42
1460	AX-AC-CHS-22-1505-0	461171	1630	1505	1,48
1520	AX-AC-CHS-22-1565-0	461170	1690	1565	1,54
1580	AX-AC-CHS-22-1625-0	461169	1750	1625	1,60
1640	AX-AC-CHS-22-1685-0	461168	1810	1685	1,66
1700	AX-AC-CHS-22-1745-0	461167	1870	1745	1,72
1820	AX-AC-CHS-22-1865-0	461166	1990	1865	1,84
1940	AX-AC-CHS-22-1985-0	461165	2110	1985	1,96
2060	AX-AC-CHS-22-2105-0	461164	2230	2105	2,08
2180	AX-AC-CHS-22-2225-0	461163	2350	2225	2,19
2300	AX-AC-CHS-22-2345-0	461162	2470	2345	2,31
2420	AX-AC-CHS-22-2465-0	461006	2590	2465	2,43
2540	AX-AC-CHS-22-2585-0	461005	2710	2585	2,55
2660	AX-AC-CHS-22-2705-0	461004	2830	2705	2,67
2780	AX-AC-CHS-22-2825-0	461003	2950	2825	2,79
3020	AX-AC-CHS-22-3065-0	461002	3190	3065	3,02
3260	AX-AC-CHS-22-3305-0	461000	3430	3305	3,26
3500	AX-AC-CHS-22-3545-0	460999	3670	3545	3,50
3740	AX-AC-CHS-22-3785-0	460997	3910	3785	3,73

Tabelle 6.14 $_$ Verbindungswellen für AXE80

Hub der Y-Achse (AXE160Z)	Typ Verbindungswelle	ID - Nummer	Mittenabstand A der X-Achsen	Wellenlänge L	Masse
[mm]			[mm]	[mm]	[kg]
300	AX-AC-CHS-28-0337-0	460996	490	337	0,53
360	AX-AC-CHS-28-0397-0	460995	550	397	0,62
420	AX-AC-CHS-28-0457-0	460994	610	457	0,72
480	AX-AC-CHS-28-0517-0	460992	670	517	0,81
540	AX-AC-CHS-28-0577-0	460991	730	577	0,91
600	AX-AC-CHS-28-0637-0	460990	790	637	1,00
660	AX-AC-CHS-28-0697-0	460989	850	697	1,10
720	AX-AC-CHS-28-0757-0	460987	910	757	1,19
780	AX-AC-CHS-28-0817-0	460986	970	817	1,28
840	AX-AC-CHS-28-0877-0	460985	1030	877	1,38
900	AX-AC-CHS-28-0937-0	460984	1090	937	1,47
960	AX-AC-CHS-28-0997-0	460983	1150	997	1,57
1020	AX-AC-CHS-28-1057-0	460982	1210	1057	1,66
1080	AX-AC-CHS-28-1117-0	460981	1270	1117	1,76
1140	AX-AC-CHS-28-1177-0	460980	1330	1177	1,85
1200	AX-AC-CHS-28-1237-0	460979	1390	1237	1,94
1260	AX-AC-CHS-28-1297-0	460874	1450	1297	2,04
1320	AX-AC-CHS-28-1357-0	460873	1510	1357	2,13
1380	AX-AC-CHS-28-1417-0	460872	1570	1417	2,23
1440	AX-AC-CHS-28-1477-0	460871	1630	1477	2,32
1500	AX-AC-CHS-28-1537-0	460870	1690	1537	2,42
1560	AX-AC-CHS-28-1597-0	460869	1750	1597	2,51
1620	AX-AC-CHS-28-1657-0	460868	1810	1657	2,60
1680	AX-AC-CHS-28-1717-0	460867	1870	1717	2,70
1800	AX-AC-CHS-28-1837-0	460866	1990	1837	2,89
1920	AX-AC-CHS-28-1957-0	460865	2110	1957	3,08
2040	AX-AC-CHS-28-2077-0	460862	2230	2077	3,27
2160	AX-AC-CHS-28-2197-0	460555	2350	2197	3,45
2280	AX-AC-CHS-28-2317-0	460554	2470	2317	3,64
2400	AX-AC-CHS-28-2437-0	460553	2590	2437	3,83
2520	AX-AC-CHS-28-2557-0	460467	2710	2557	4,02
2640	AX-AC-CHS-28-2677-0	460551	2830	2677	4,21
2760	AX-AC-CHS-28-2797-0	460550	2950	2797	4,40
3000	AX-AC-CHS-28-3037-0	460549	3190	3037	4,77
3240	AX-AC-CHS-28-3277-0	460548	3430	3277	5,15
3480	AX-AC-CHS-28-3517-0	460466	3670	3517	5,53
3720	AX-AC-CHS-28-3757-0	460546	3910	3757	5,91
3960	AX-AC-CHS-28-3997-0	460545	4150	3997	6,28
4200	AX-AC-CHS-28-4237-0	460543	4390	4237	6,66
4500	AX-AC-CHS-28-4537-0	460542	4690	4537	7,13
4800	AX-AC-CHS-28-4837-0	460465	4990	4837	7,60
5100	AX-AC-CHS-28-5137-0	460541	5290	5137	8,08
5400	AX-AC-CHS-28-5437-0	460540	5590	5437	8,55
5700	AX-AC-CHS-28-5737-0	460539	5890	5737	9,02

Tabelle 6.15 $_$ Verbindungswellen für AXE100

Typ Verbindungswelle	ID-Nummer	Mittenabstand A der X-Achsen	Wellenlänge L	Masse
		[mm]		[kg]
AX-AC-CHS-38-0128-0	460538	300	128	0,43
AX-AC-CHS-38-0188-0	460464	360	188	0,63
AX-AC-CHS-38-0248-0	460537	420	248	0,83
AX-AC-CHS-38-0308-0	460536	480	308	1,03
AX-AC-CHS-38-0368-0	460482	540	368	1,23
AX-AC-CHS-38-0428-0	460480	600	428	1,43
AX-AC-CHS-38-0488-0	460463	660	488	1,63
AX-AC-CHS-38-0548-0	460479	720	548	1,84
AX-AC-CHS-38-0608-0	460478	780	608	2,04
AX-AC-CHS-38-0668-0	460477	840	668	2,24
AX-AC-CHS-38-0728-0	460476	900	728	2,44
AX-AC-CHS-38-0788-0	460462	960	788	2,64
AX-AC-CHS-38-0848-0	460475	1020	848	2,84
AX-AC-CHS-38-0908-0	460474	1080	908	3,04
AX-AC-CHS-38-968-0	460473	1140	968	3,24
AX-AC-CHS-38-1028-0	460472	1200	1028	3,44
AX-AC-CHS-38-1088-0	460460	1260	1088	3,64
AX-AC-CHS-38-1148-0	460471	1320	1148	3,85
AX-AC-CHS-38-1208-0	460470	1380	1208	4,05
AX-AC-CHS-38-1268-0	460469	1440	1268	4,25
AX-AC-CHS-38-1328-0	460468	1500	1328	4,45
AX-AC-CHS-38-1388-0	460459	1560	1388	4,65
AX-AC-CHS-38-1448-0	460458	1620	1448	4,85
AX-AC-CHS-38-1508-0	460457	1680	1508	5,05
AX-AC-CHS-38-1628-0	460456	1800	1628	5,45
AX-AC-CHS-38-1748-0	460454	1920	1748	5,86
AX-AC-CHS-38-1868-0	460453	2040	1868	6,26
AX-AC-CHS-38-1988-0	460452	2160	1988	6,66
AX-AC-CHS-38-2108-0	460451	2280	2108	7,06
AX-AC-CHS-38-2228-0	460429	2400	2228	7,46
AX-AC-CHS-38-2348-0	460428	2520	2348	7,87
AX-AC-CHS-38-2468-0	460427	2640	2468	8,27
AX-AC-CHS-38-2588-0	460426	2760	2588	8,67
AX-AC-CHS-38-2828-0	460425	3000	2828	9,47
AX-AC-CHS-38-3068-0	460424	3240	3068	10,28
AX-AC-CHS-38-3308-0	460423	3480	3308	11,08
AX-AC-CHS-38-3548-0	460422	3720	3548	11,89
AX-AC-CHS-38-3788-0	460421	3960	3788	12,69
AX-AC-CHS-38-4028-0	460419	4200	4028	13,49
AX-AC-CHS-38-4328-0	460418	4500	4328	14,50
AX-AC-CHS-38-4628-0	460416	4800	4628	15,50
AX-AC-CHS-38-4928-0	460415	5100	4928	16,51
AX-AC-CHS-38-5228-0	460414	5400	5228	17,51
AX-AC-CHS-38-5528-0	460413	5700	5528	18,52

Bei einer hohen Drehzahl und großen Länge der Verbindungswelle ist die kritische Drehzahl zu berücksichtigen. In dem Diagramm in Bild 6.28 ist die maximale Geschwindigkeit in Abhängigkeit von dem Achsabstand dargestellt. Den Grenzwerten hier liegen 50% der kritischen Drehzahl als Grenzwert zu Grunde. Setzen Sie sich bitte bei höheren Anforderungen mit unseren NTN-SNR – Anwendungsingenieuren in Verbindung.

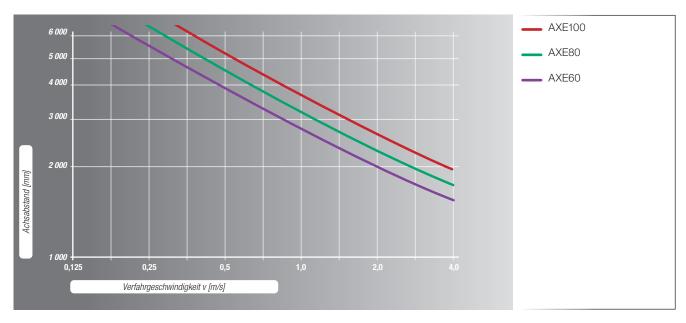


Bild 6.27 ____ Dynamische Grenzwerte von Verbindungswellen

6.2.3. Planetengetriebe / Motoradapter

Für die Linearachsen der Baureihe AXE stehen Planetengetriebe mit verschiedenen Übersetzungen zur Verfügung. In Tabelle 6.16 sind die technischen Daten für die einzelnen Planetengetriebe zusammengefasst.

Tabelle 6.16 _ Planetengetriebe

Тур	Getriebebezeichnung	ID-Nummer	Spann- system	Übersetzung i	Max. Beschleuni- gungs- moment	Zulässige mittlere Antriebsdreh- zahl	Max. Antriebsdreh- zahl	Verdrehspiel	Masse	Massen- trägheitsmoment
					[Nm] ¹		[min ⁻¹]	[arcmin]	[kg]	[kgcm²] bei d
AXE40A	AX-AC-PGE040- 010-C9	468332	C9	10	13	4 300	9 000	≤ 12	0,50	0,03
AXE60A AXE60Z AXE110Z	AX-AC-PGE060- 005-C19	468335	C19	5	40	3 300	7,000	. 10	1.40	0,39
	AX-AC-PGE060- 010-C14	468334	C14	10	35	4 000	7 000	≤ 12	1,40	0,15
AXE80 AXE160	AX-AC-PGE080- 005-C19	468336	010	5	100	3 100	7,000	. 10	0.00	0,48
	AX-AC-PGE080- 010-C19	468337	C19	10	90	3 600	7 000	≤ 12	2,90	0,40
AXE100Z	AX-AC-PGE115- 005-C24	468338	004	5	250	2 300	E E00	× 10	7.50	1,70
	AX-AC-PGE115- 010-C24	468339	C24	10	220	2 800	5 500	≤ 12	7,50	1,40

Für marktübliche Antriebe stehen entsprechende Flansche zur Verfügung um diese an die Planetengetriebe zu montieren. In Tabelle 6.17 sind die Bezeichnungen und Abmessungen für die einzelnen Linearachsen zusammengefasst und in Bild 6.28 die Bemaßung gekennzeichnet.

Bei der Auswahl ist darauf zu achten, dass die Größe des Spannsystems von Motoradapter und Planetengetriebe übereinstimmen.

Tabelle 6.17 _ Abmessungen Motoradapter

Typenschlüssel	ID-Nummer	Spannsystem	D	d	max. Wellenlänge	b	е	F	Т	M_
									[mm]	
AX-AC-MAU-E63-B40-D9x20-M4-C9	468209	C9	60	9	20	40	63	3,3	15,0	M4
AX-AC-MAU-E63-B40-D9x20-M5-C14	468215	C14	60	9	20	40	63	3,4	16,1	M5
AX-AC-MAU-E95-B50-D14x30-M6-C14	468217		80	14	30	50	95	5,3	21,2	M6
AX-AC-MAU-E70-B50-D14x30-M5-C14	468218		80	14	30	50	70	4,0	21,2	M5
AX-AC-MAU-E75-B60-D14x30-M5-C14	468219		70	14	30	60	75	3,3	23,1	M5
AX-AC-MAU-E95-B50-D14x30-M6-C19	468220	C19	80	14	30	50	95	4,0	21,2	M6
AX-AC-MAU-E70-B50-D14x30-M5-C19	468221		80	14	30	50	70	4,4	21,2	M5
AX-AC-MAU-E90-B70-D19x40-M5-C19	468223		80	19	40	70	90	4,4	21,2	M5
AX-AC-MAU-E100-B80-D19x40-M6-C19	468225		80	19	40	80	100	6,4	31,2	M6
AX-AC-MAU-E115-B95-D19x40-M8-C19	468226		80	19	40	95	115	5,3	21,2	M8
AX-AC-MAU-E75-B60-D11x23-M5-C19	468228		90	11	23	60	75	4,4	21,2	M5
AX-AC-MAU-E75-B60-D14x30-M5-C19	468229		90	14	30	60	75	7,4	31,2	M5
AX-AC-MAU-E100-B80-D14x30-M6-C19	468230		100	14	30	80	100	10,5	31,2	M6
AX-AC-MAU-E75-B60-D14x30-M5-C24	468231	- C24	115	14	30	60	75	4,4	21,8	M5
AX-AC-MAU-E95-B50-D14x30-M6-C24	468232		115	14	30	50	95	4,4	21,8	M6
AX-AC-MAU-E100-B80-D14x30-M6-C24	468233		115	14	30	80	100	5,4	21,8	M6
AX-AC-MAU-E115-B95-D19x40-M8-C24	468235		115	19	40	95	115	6,0	31,8	M8
AX-AC-MAU-E130-B110-D19x40-M8-C24	468240		115	19	40	110	130	4,4	31,8	M8
AX-AC-MAU-E130-B110-D24x50-M8-C24	468327		115	24	50	110	130	4,4	31,8	M8
AX-AC-MAU-E130-B95-D19x40-M8-C24	468329		115	19	40	95	130	5,4	31,8	M8
AX-AC-MAU-E130-B95-D24x50-M8-C24	468331		115	24	50	95	130	5,4	31,8	M8

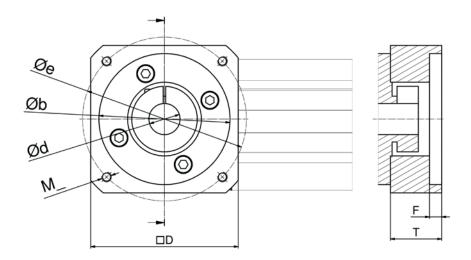


Bild 6.28 ____ Abmessungen Motoradapter

6.2.3.1 Formschlüssige Montage der Planetengetriebe

Die formschlüssige Montage von Planetengetrieben stellt die einfachste Variante der Montage von Getrieben an SNR - Linearachsen mit Zahnriemenantrieb der Baureihe AXE dar. Hier wird die Getriebewelle mit Passfeder formschlüssig in die Hohlwelle der Riemenscheibe eingesteckt. Geeignet ist diese Variante für Anwendungen mit geringer Dynamik und geringen Wechsellasten wie z. B. für vertikale Anwendungen. Durch die Direktmontage entfallen Kupplungsglocke, Steckwelle und Kupplung, so dass sich äußerst kompakte Abmessungen ergeben und die Massenträgheitsmomente reduziert und damit die Antriebsdrehmomente gesenkt werden.

In Tabelle 6.18 sind die Abmessungen der verfügbaren Adapter für die einzelnen Linearachsen und in Tabelle 6.19 die Standard – Planetengetriebe mit den zugehörigen Adaptern zusammengefasst. In den Bildern 6.31 und 6.33 (Kapitel 6.2.3.2) ist die Bemaßung gekennzeichnet.

Tabelle 6.18 _ Abmessungen der Adapter für formschlüssige Getriebemontage

Тур	Typenschlüssel	ID-Nummer	Bauform Flansch	e2	α	s1	b2	d	i2 _{max.}	i2 _{max} I	k2	a2	L2
					[°]					[mm]			[mm]
AXE40A	AX-AC-40ZA-DAD-C	239690	B14 C40	34	45	4 x Ø 4,3	26	10	31	4,0	-	-	3,1
AXE60Z	AX-AC-60ZA-DAD-A	190466	B14 C60	52	45	4 x Ø 5,5	40	14	47	10	60	-	10
AXE60A	AX-AC-60ZA-DAD-C	165758	B5 C120	100	45	4 x M6 x 8	80	14	50	8,0	100	120	8,0
AXE80Z	AX-AC-80ZA-DAD-A	187286	B14 C80	70	45	4 x Ø 6,5	60	20	71	12	82	-	12
ANEOUZ	AX-AC-80ZA-DAD-E	168623	B5 C120	100	45	4 x M6 x 12	80	20	72	12,5	-	120	12,5
	AX-AC-100Z-DAE-A	409338	B5 C120	100	45	4 x M6 x 12	80	25	82	17	103	120	12
AXE100Z	AX-AC-100Z-DAE-B	400760	B14 C120	100	45	4 x Ø 6,5	80	25	82	17	100	115	12
	AX-AC-100Z-DAE-C	410937	B5 C160	130	45	4 x M8 x 12	110	25	82	17	115	145	12

Tabelle 6.19 $_$ Abmessungen der formschlüssig montierten Planetengetriebe

Тур	Getriebebezeichnung	ID-Nummer	Übersetzung i	L	Typenschlüssel Adapter	ID - Nummer
AXE40A	AX-AC-PGE040-010-C9	468332	10	63,7	AX-AC-40ZF-DAD-C	239690
AXE60A	AX-AC-PGE060-010-C14	468334	5	62,0	AX-AC-60AF-DAD-A	190466
AXE60Z	AX-AC-PGE060-005-C19	468335	10	90,5	AX-AU-DUAF-DAD-A	190400
AXE80Z	AX-AC-PGE080-005-C19	468336	5	111,5	AX-AC-80ZF-DAD-A	187286
ANEOUZ	AX-AC-PGE080-010-C19	468337	10	111,5	AX-AU-0UZF-DAD-A	107200
AXE100Z	AX-AC-PGE115-005-C24	468338	5	143,3	AX-AC-100ZF-DAE-B	400760
AXETUUZ	AX-AC-PGE115-010-C24	468339	10	143,3	AX-AU-TUUZF-DAE-D	400760

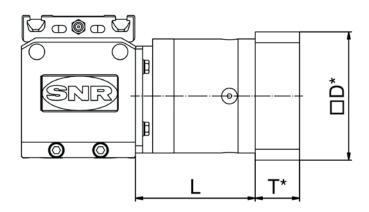


Bild 6.29____ Abmessungen AXE der formschlüssig montierten Planetengetriebe

6.2.3.2 Kraftschlüssige Planetengetriebemontage mit Kupplung und Kupplungsglocke

Eine universelle Variante ist die Adaption über eine integrierte Kupplung in Kombination mit einer Kupplungsglocke. Dabei ist die achsseitige Kupplungshälfte mit der Antriebsriemenscheibe verschraubt und bietet durch die kraftschlüssige Drehmomentübertragung auch bei hoher Dynamik optimale Betriebssicherheit. Standardmäßig werden genutete Klemmnaben für Antriebswellen mit Paßfeder verwendet.

Für marktübliche Antriebe mit einem standardisierten B5-Flansch steht eine große Auswahl an Kupplungsglocken zur Verfügung. Standardmäßig werden genutete Klemmnaben für Antriebswellen mit Paßfeder verwendet. Die Bezeichnungen und Abmessungen für die einzelnen Achsen sind in Tabelle 6.20 zusammengefasst und die Bemaßung in Bild 6.30 gekennzeichnet.

Tabelle 6.20 _ Bezeichnungen und Abmessungen für kraftschlüssige Antriebsadaption mit Kupplung und Kupplungsglocke

Тур	Typenschlüssel	ID-Nummer	Bauform Flansch	b2	e2	α	s1	d	L2	LK ¹
			1 14115511						[mm]	[mm]
AXE40A	AX-AC-40ZA-CCO-A-08	186859	B5 TK63	40	63	45	4 v M4 v 0	8	37,0	31,0
AXE4UA	AX-AC-40ZA-CCO-A-09	186857	DO 1803	40	03	43	4 x M4 x 8	9	37,0	31,0
	AX-AC-60ZA-CCO-A-16	169893	LP070	52	62	0	4 x Ø 5,5	16	58,0	
AXE60Z	AX-AC-60ZA-CCO-E-19	171711	B5 C120	80	100	45	4 x M6 x 12	19	65,0	50,0
AXE60A	AX-AC-60ZA-CCO-E-20	171712	B3 G120	00	100	43	4 X IVIO X 12	20	05,0	50,0
	AX-AC-60ZA-CCO-I-14	187161	B14 C60	40	52	45	4 x Ø 5,5	14	56,5	
	AX-AC-80ZA-CCO-A-19	160928						19		
	AX-AC-80ZA-CCO-A-20	160929	B5 C160	110	130	45	4 v M0 v 16	20	74.0	
	AX-AC-80ZA-CCO-A-24	160930	B3 C100	110	130	43	4 x M8 x 16	24	74,0	
	AX-AC-80ZA-CCO-A-25	160931						25		
	AX-AC-80ZA-CCO-B-19	160984						19		
AXE80Z	AX-AC-80ZA-CCO-B-20	160987	B5 C120	80	100	45	4 x M6 x 12	20	71,0	E0.0
AXEOUZ	AX-AC-80ZA-CCO-B-25	230960					25		59,0	
	AX-AC-80ZA-CCO-C-14	244920	B5 C120	80	100	45	4 x M6 x 15	14	62,0	
	AX-AC-80ZA-CCO-C-20	161016	B3 G120	00	100	43	4 X IVIO X 15	20	02,0	
	AX-AC-80ZA-CCO-D-16	161043	LP070	52	62	0	4 x Ø 5,5	16	66,0	
	AX-AC-80ZA-CCO-E-22	161046	LP090	68	80	0	4 x Ø 6,5	22	81,0	
	AX-AC-80ZA-CCO-F-20	161308	B14 C80	60	70	45	4 x Ø 6,5	20	70,0	
	AX-AC-100Z-CC0-A-25	400753	B14 C120	80	100	45	4 x Ø 10,5 x 14	25	76,0	
	AX-AC-100Z-CCO-A-20	400616	B5 C120	80	100	45	4 x M6 x 15	20	65,0	
AXE100	AX-AC-100Z-CC0-B-25	409852	B5 C160	110	130	45	4 x M8 x 20	25	78,0	61,0
	AX-AC-100Z-CC0-B-30	400748	D3 C100	110	130	40	4 X IVIO X 20	30	70,0	
	AX-AC-100Z-CC0-C-22	400756	LP090	68	80	0	4 x Ø 6,6	22	85,0	
	AX-AC-110Z-CCO-A-20	308887	B5 C120	45	100	80	4 x M6 x 10	20	42,5	
AXE110	AX-AC-110Z-CCO-C-16	164502	LP070	0	62	52	4 x Ø 5,5	16	40,5	32,5
ANLITU	AX-AC-110Z-CC0-E-14	183464	CP060	45	52	40	4 x Ø 5,5	14	40,5	32,3
	AX-AC-110Z-CC0-F-20	253672	B14 C80	45	70	60	4 x Ø 6,6	20	54,5	
	AX-AC-160Z-CCO-A-20	154897	B5 C120	80	100	45	4 x M6 x 15	20	22,5	
	AX-AC-160Z-CCO-B-16	163809	LP070	52	62	0	4 x Ø 5,5	16	31,0	
AXE160	AX-AC-160Z-CCO-C-22	160340	LP090	68	80	0	4 x Ø 6,6	22	33,5	22.5
AXETOU	AX-AC-160Z-CCO-D-20	173137	B14 C80	60	70	45	4 x Ø 6,6	20	28,5	22,5
	AX-AC-160Z-CC0-E-25	185836	DE C160	110	130	45	4 v M0 v 10	25	20.5	
	AX-AC-160Z-CCO-E-30	185844	B5 C160	110	130	40	4 x M8 x 18	30	39,5	

¹⁻Maßdarstellung in Kapitel 3.8 Bild 3.8

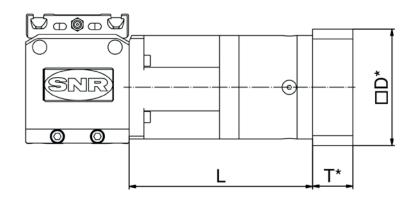


Bild 6.30____ Einbaumaße für kraftschlüssige Planetengetriebemontage mit Kupplung und Kupplungsglocke

* Siehe Kapitel 6.2.3.3

In Tabelle 6.21 sind die Standard – Planetengetriebe mit den zugehörigen Adaptern zusammengefasst und in den Bildern 6.31 und 6.32 die Bemaßung gekennzeichnet.

Tabelle 6.21 _ Einbaumaße für kraftschlüssige Planetengetriebemontage mit Kupplung und Kupplungsglocke

Тур	Getriebebezeichnung	ID - Nummer	Spannsystem	Übersetzung i	L [mm]	Typenschlüssel Adapter	ID - Nummer
AXE60A	AX-AC-PGE060-010-C14	468334	C14	5	62,0	AX-AC-CC060-Z-	187161
AXE60Z	AX-AC-PGE060-005-C19	468335	C19	10	90,5	A-G14-I	107101
AXE80Z	AX-AC-PGE080-005-C19	-C19 468336 C19 —		5	111,5	AX-AC-CC080-Z-	161308
AVEOUT	AX-AC-PGE080-010-C19	468337	- 019	10	111,5	A-GS20-F	101300
AXE100Z	AX-AC-PGE115-005-C24	468338	C24	5	143,3	AX-AC-CC0100-Z-	400753
ANLIUUZ	AX-AC-PGE115-010-C24	468339	024	10	143,3	G25-A	400733
AXE110Z	AX-AC-PGE060-010-C14	468334	C14	5	62,0	AX-AC-CC0110-Z-	183464
AXETTUZ	AX-AC-PGE060-005-C19	468335	C19	10	90,5	MP060	103404
AXE160Z	AX-AC-PGE080-005-C19	468336	C19	5	111,5	- AX-AC-CC0160-Z-D	173137
ANE I DUZ	AX-AC-PGE080-010-C19	468337	019	10	111,5	AV-40-000100-7-D	1/3/3/

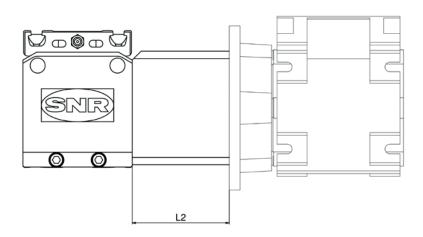


Bild 6.31 ____ Abmessungen Kupplungsglocke

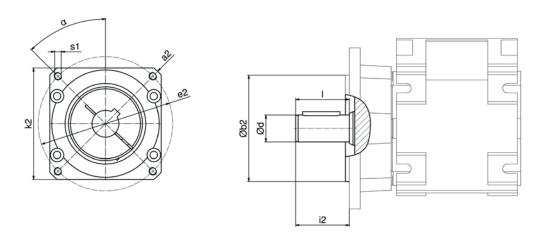


Bild 6.32 ____ Abmessungen Antriebsadaption

6.3 Schalter

6.3.1. Schaltervarianten

Für die Positionserfassung stehen je nach Anforderung mechanische Schalter in unterschiedlichen Schutzklassen sowie induktive Näherungsschalter mit den üblichen Ausgangsschaltungen zur Verfügung.

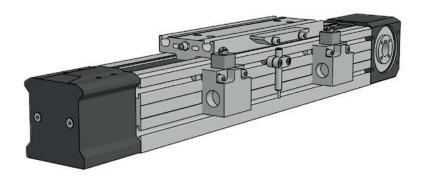


Bild 6.33 ____ Linearachse mit mechanischem Endschaltersatz und induktivem Näherungsschalter

Zur Notfallabschaltung der Antriebe, bevor die mechanischen Endlagendämpfer erreicht werden, kommen in aller Regel die mechanisch betätigten Schalter zum Einsatz. Eine Kombination mit außen liegenden induktiven Näherungsschaltern, um zusätzliche Schaltpunkte für z.B. Referenzfahrten zu setzen, ist möglich. Ein mechanischer Endschaltersatz besteht aus einem Schalter mit Befestigungselementen und Betätigungselement.

Eine äußerst kompakte Variante für Linearachsen der Baureihe AXE stellen die induktiven Näherungsschalter für den Nuteinbau dar (Bild 6.34). Sie schließen bündig mit der Oberfläche des Aluminiumprofils der Achse ab und bilden nahezu keine Störkontur. Zusätzlich sollte in die Nut ein Abdeckprofil (Kapitel 6.5) eingebracht werden, um die Positionierung der Leitung in der Nut sicherzustellen.

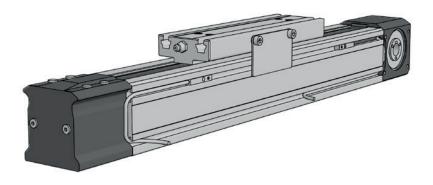
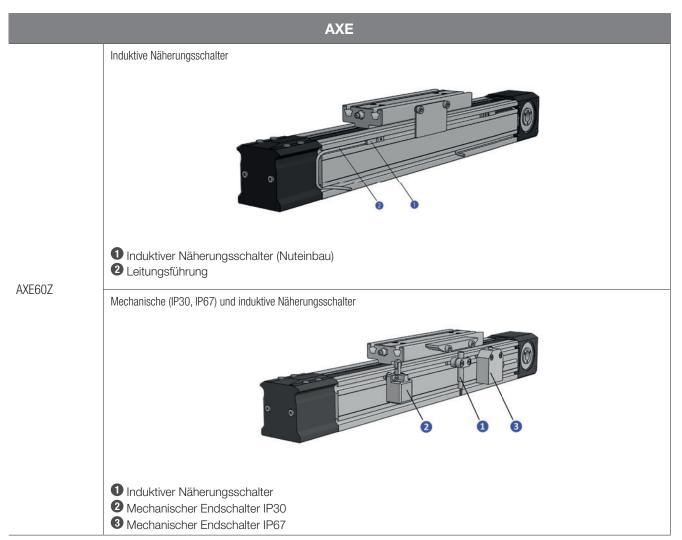


Bild 6.34____ Induktive Näherungsschalter für den Nuteinbau

Die induktiven Näherungsschalter sind in den Varianten PNP-NC (Öffner), PNP-NO (Schließer) und NPN-NC (Öffner) erhältlich. Ein Satz induktiver Näherungsschalter besteht aus einem Schalter mit Befestigungselementen und Betätigungselement.

6.3.2 Leitungsführung

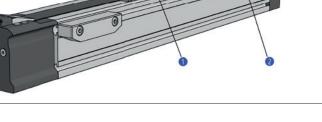
Die Leitungen der maximal drei induktiven Näherungsschalter für die Baureihe AXE werden in der Befestigungsnut zum Antrieb verlegt AXE80 und 100) bzw. Umlenkkopf (AXE160).


Bei der Type AXE60 sind nur zwei induktive Näherungsschalter pro Seite mit der Leitungsführung zum jeweiligen Profilende einsetzbar.

Bei den Linearachsen AXE110Z erfolgt die Leitungsführung der maximal zwei Näherungsschalter auf der Oberseite des Profils in zwei Profilnuten (Kapitel 3.12.3) separat für jeden Näherungsschalter zu einer Bohrung im Umlenkkopf.

6.3.3 **Anbauvarianten**

In Abhängigkeit von Baugröße und Antriebsvariante sind vielfältige Kombinations- und Anbaumöglichkeiten von Endschaltern möglich, die in Tabelle 6.22 zusammengefasst sind. Eine Übersicht dieser Kombinationsmöglichkeiten ist Tabelle 6.26 in Kapitel 6.3.5 enthalten.


Tabelle 6.22 _ Endschalteranbau an SNR - Linearachsen AXE

Induktive Näherungsschalter 1 Induktiver Näherungsschalter (Nuteinbau) 2 Leitungsführung AXE80Z AXE100Z Mechanische (IP67) und induktive Näherungsschalter 1 Induktiver Näherungsschalter 2 Mechanischer Endschalter IP67 Mechanische (IP30) und induktive Näherungsschalter AXE110Z 1 Induktiver Näherungsschalter 2 Mechanischer Endschalter IP30 Mechanische (IP67) und induktive Näherungsschalter AXE160Z

1 Induktiver Näherungsschalter2 Mechanischer Endschalter IP67

Antriebskopf bewegt Induktive Näherungsschalter 1 Induktiver Näherungsschalter AXE40A Profil bewegt Mechanische (IP30) und induktive Näherungsschalter 1 Induktiver Näherungsschalter 2 Mechanischer Endschalter IP30 Antriebskopf bewegt Mechanische (IP67) und induktive Näherungsschalter 1 Induktiver Näherungsschalter 2 Mechanischer Endschalter IP67 Antriebskopf bewegt Induktive Näherungsschalter AXE60A 1 Induktiver Näherungsschalter Profil bewegt Mechanische (IP67) und induktive Näherungsschalter

1 Induktiver Näherungsschalter2 Mechanischer Endschalter IP67

Abmessungen

Für die Montage von Endschaltern bestehen bei Linearachsen der Baureihe AXE in Abhängigkeit von Baugröße unterschiedliche Anbauvarianten (Bild 6.35) und daraus resultierende Störkonturen.

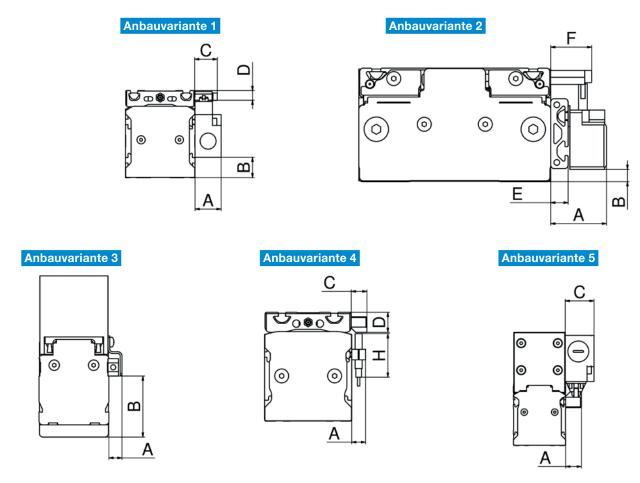


Bild 6.35____ Anbauvarianten der Endschalter

Die Abmessungen sind in Tabelle 6.23 enthalten.

Tabelle 6.23 _ Abmessungen Endschalteranbau

	Тур	Schalter	Anbau- variante	А	В	С	D	E	F	G	Н	L1
					[mm]							
		AX-AC-60-SUN-M2	1	22,0	19,5	25	11,5					95
AXE60Z		AX-AC-60-SUN-M3	1	20,0	12,5	18	19,0					80
		AX-AC-60Z-SUN-I2	4	16,0		18	19,0				50	
AXE80Z		AX-AC-80-SUN-M1	1	30,0	25,5	26	11,0					95
ANEOUZ		AX-AC-80Z-SUN-I2	4	16,0		26	11,0				50	95
AXE100Z		AX-AC-100-SUN-M1	1	30,0	22,5	15	23,5					80
AXETUUZ		AX-AC-100Z-SUN-I2	4	16,0		15	23,5				50	80
AXE110Z		AX-AC-110SUN-M2	2	31,0	7,0	24	9,3	10	27,5	20		120
AXE160Z		AX-AC-160-SUN-M1	1	30,0	9,5	15	8,5					85
	Schlitten bewegt	AX-AC-40-SUN-I1	3	8	28							30
AXE40A	Profil bewegt	AX-AC-40A-SUN-M2	5	18,0		21						58
	Fiolii bewegt	AX-AC-40A-SUN-I2	5	18,0		16						58
	Schlitten bewegt	AX-AC-60A-SUN-M1-P	1	30,0	9,5	18	55,0					80
AVECOA		AX-AC-60Z-SUN-I2	4	16,0		15	50,0					55
AXE60A	Profil bewegt	AX-AC-80A-SUN-M1-H	5	18,0		30						80
		AX-AC-80A-SUN-I2	5	18,0		16						80

¹⁻Länge Betätigungselement

6.3.4. **Technische Daten**

Die technischen Daten der verfügbaren Endschalter sind in den Tabellen 6.24 und 6.25 enthalten.

Tabelle 6.24 _ Mechanische Sicherheitsendschalter

ID - Nummer Schaltermontageset	Lebensdauer	Gehäusewerkstoff	Leitungseinführung	Leiterquerschnitt	Schutzklasse
151312					
156331					
157296	30 x 10 ⁶ Schaltspiele	Kunststoff	M20 x 1,5	0,52,5 mm ²	IP67
163876					
353357					
156335					
164451	30 x 10 ⁶ Schaltspiele	Kunststoff	Schraubanschluss 4 x M3,5	0,51,5 mm ²	IP30
405675					
156336	10 x 10 ⁶ Schaltspiele	Metall	Schraubanschluss	max. 1,5 mm ²	IP67

Schaltsegment: Sprungschalter (Zwangstrennung) je 1 x Öffner und 1 x Schließer

Tabelle 6.25 _ Induktive Näherungsschalter

ID	- Nummer Schaltermo	ontageset	Anachluseanannung	Max. Laststrom	Schaltgenauigkeit	Leitungslängen	Schutzklasse
PNP-NC	PNP-NO	NPN-NO	Anschlussspannung	IVIAX. LASISII UIII	Scridityeriadiykeit	Leituriysiariyeri	SCHUIZKIASSE
162170	162717	162173	1030 V DC	100 mA	≤ 2% des Schaltabstandes	10 m	IP67
161445	154708	161447	1030 V DC	100 mA	≤ 10% des	5 m	IP67
187110	156345	187109	1050 V DO	TOOTHA	Schaltabstandes	3111	11 07
162684	156342	152349					
163249	162687	163250					
166852	163252	166836	1230 V DC	100 mA	≤ 5% des Schaltabstandes	2 m	IP67
353806	353810	353808					
405715	405716	405717					

6.3.5. Kombinationsmöglichkeiten

Die Linearachsen der Baureihe AXE können baugrößenabhängig mit verschiedenen Endschaltern oder Kombinationen aus verschiedenen Endschaltern ausgerüstet werden. Tabelle 6.26 enthält die ID – Nummern und Typenschlüssel der Betätigungselemente und der möglichen Endschaltersätze, die jeweils aus einem Endschalter und den dazu benötigten Befestigungselementen und Schrauben bestehen.

Tabelle 6.26 _ Kombinationsmöglichkeiten für den Schalteranbau

				AXE_Z				AXI	E_A	
Schaler- version			AXE80Z	AXE100Z	AXE110Z	AXE160Z	AXE40A Profil bewegt	AXE40A Schlitten bewegt	AXE60A Profil bewegt	AXE60A Schlitten bewegt
	IP 67	AX-AC-60-SUN-M3 ID 156336	AX-AC-80-SUN-M1 ID 151312	AX-AC-100-SUN-M1 ID 353357		AX-AC-160-SUN-M1 ID ID 163876			AX-AC-uniA-SUN-M1-H ID 157296	AX-AC-240+60A-SUN- M1-P ID 162588
	Betätigungselement	AX-AC-60-CSW-M3 ID 156339	AX-AC-80-CSW-M1 ID 152199	AX-AC-100-CSW-M1 ID 406342		AX-AC-160-CSW-M1 ID ID 163869			AX-AC-60A-CSW-P ID 245820	AX-AC-uniA-CSW-H ID 188260
mechanisch*	IP30	AX-AC-60-SUN-M2 ID 156335			AX-AC-110Z-SUN-M2 ID 164451 ¹ AX-AC-110-SUN-M2 ID 164469 ²		AX-AC-40A-SUN-M2 ID 405675			
	Betätigungselement	AX-AC-60-CSW-M2 ID 158669			AX-AC-110-CSW-M2 ID 164457		AX-AC-40A-CSW-M2 ID 405731			
	PNP-NC	AX-AC-60Z-SUN-I2-PNP- NC-2m ID 166852	AX-AC-80Z-SUN-I2-PNP- NC-2m ID 162684	AX-AC-100Z-SUN-I2- PNP-NC-2m ID 353806	AX-AC-uni-SUN ID 16	-I1-PNP-NC-5m i1445	AX-AC-40A-SUN-I2-PNP- NC-2m ID 405715	AX-AC-40-SUN-I1-PNP- NC-5m ID 187110	AX-AC-uniA-SUN-I2-PNP- NC-2m ID 163249	AX-AC-60Z-SUN-I2-PNP- NC-2m ID 166852
induktiv*	PNP-NO	AX-AC-60Z-SUN-I2-PNP- NO-2m ID 156342	NO-2m ID 162687	AX-AC-100Z-SUN-I2- PNP-NO-2m ID 353810	AX-AC-uni-SUN ID 15	-I1-PNP-N0-5m i4708	AX-AC-40A-SUN-I2-PNP- N0-2m ID 405716	NO-5m ID 156345	AX-AC-uniA-SUN-I2-PNP- NO-2m ID 163252	AX-AC-60Z-SUN-I2-PNP- NO-2m ID 156342
	NPN-NO	AX-AC-60Z-SUN-I2-NPN- NO-2m ID 166836	AX-AC-80Z-SUN-I2-NPN- NO-2m ID 152349	AX-AC-100Z-SUN-I2- NPN-NO-2m ID 353808	AX-AC-uni-SUN ID 16	-II-INPIN-IVU-DIII	AX-AC-40A-SUN-I2-NPN- NO-2m ID 405717	AX-AC-40-SUN-I1-NPN- N0-5m ID 187109	AX-AC-uniA-SUN-I2-NPN- NO-2m ID 163250	AX-AC-60Z-SUN-I2-NPN- NO-2m ID 166836
	Betätigungselement	AX-AC-60-CSW-I ID 156339	AX-AC-80-CSW-I ID 152199	AX-AC-100-CSW-I ID 406342			AX-AC-40A-CSW-M2 ID 405731	AX-AC-40-CSW-I ID 156344	AX-AC-60A-CSW-P ID 245820	AX-AC-uniA-CSW-H ID 188260
	PNP-NC	A	(-AC-SUN-GRO-PNP-NC-10 ID 162170	m						AX-AC-SUN-GRO-PNP- NC-10m ID 162170
induktiv	PNP-NO	A)	(-AC-SUN-GRO-PNP-NO-10 ID 162717	lm						AX-AC-SUN-GRO-PNP- NO-10m ID 162717
(Nuteinbau)	NPN-NC	A	X-AC-SUN-GRO-NPN-NC-3 ID 162173	n						AX-AC-SUN-GRO-NPN- NC-3m ID 162173
	Betätigungselement	AX-AC-60-CSW-I ID 156338	AX-AC-80-CSW-I ID 152348	AX-AC-100-CSW-I ID 351638						AX-AC-uniA-CSW-I ID 188300

^{*} Werden induktive und mechanische Schalter in Kombination einseitig montiert, ist nur ein Betätigungselement notwendig.

¹⁻ Montage am Antriebskopf

²⁻ Montage am Umlenkkopf

6.4 Energieketten

Für AXE - Linearachssysteme können passende Energieketten angeboten werden.

Je nach Typ, Baugröße und Anforderung stehen für die Linearachssysteme unterschiedliche Typen von Energieketten zur Verfügung (Tabelle 6.27). Die Ausführungen unterscheiden sich in der Anzahl der Trennstege, die in jedem zweiten Kettenglied enthalten sind.

Tabelle 6.27 _ Energieketten

Тур		mittlerer Radius	Öffi	nen	Inner	nmaß	max. Hub horizontal freitragend	Füllmasse bei max. Hub horizontal	max. Hub horizontal freitragend ⁷	Füllmasse bei max. Hub horizontal ¹	X - A	chse	Υ - Α	chse .	Z - A	chse
Тур	Anzahl Trennstege		innen	außen	Breite	Но́ће					AXE60	AXE80	AXE110	AXE160	AXE40A	AXE60A
	An	[mm]			[m	m]	[mm]	[kg/m]		[kg/m]						
B15.5.075	1	75		Х	63,0	17,0	1 500	1,0	2 000	0,5	Χ					
B15.050.075	1	75		Х	50,0	17,0	1 500	1,0	2 000	0,5			Х			
1400.020.075	2	75	Х		20,0	21,0	2 000	2,0	3 000	1,0					Х	
2500.07.100.0	2	100		Х	77,0	25,0	3 000	2,0	3 700	1,0		Х				
1500.068.100.0	2	100		Х	68,0	21,0	2 000	2,0	3 000	1,0				Х		
B15i.050.100.0	1	100	Х		50,0	17,0	1 500	1,0	2 000	0,5						Х

6.5 Nutabdeckprofile

Bei Umgebungsbedingungen mit starken Verschmutzungen können die Profilnuten, um Ablagerungen an den Linearachsen zu vermeiden, mit Abdeckprofilen (Bild 6.36 und 6.37)verschlossen werden. Die Reinigung dieser Systeme wird dadurch erheblich erleichtert.

Bild 6.37 ____ Kunststoffabdeckprofil

Bei Linearachsen mit induktiven Näherungsschaltern zum Nuteinbau (Kapitel 6.3.3) sollten die Nuten, welche die Leitungsführungen enthalten, immer mit Abdeckprofilen verschlossen werden.

Tabelle 6.28 enthält die Übersicht der verfügbaren Abdeckprofile.

Tabelle 6.28 _ Abdeckprofile

Тур	Typenschlüssel	ID - Nummer	Einbaumöglichkeit	Material	Farbe	Länge [mm]
AXE40	AX-AC-GIN-5-2000-PP	101842	Profilunterseite	Polypropylen	schwarz	2 000
AXE60	AX-AC-GIN-5-2000-PP	101842	alle Nuten	Polypropylen	schwarz	2 000
AXE80	AX-AC-GIN-6-2000L-PP	101832	alle Nuten	Polypropylen	schwarz	2 000
AXEOU	AX-AC-GIN-6-2000-AL	101841	alle Nuteri	Aluminium eloxiert	natur	2 000
	AX-AC-GIN-6-2000L-PP	101832	obere seitliche Nut	Polypropylen	schwarz	2 000
AXE100	AX-AC-GIN-6-2000-AL	101841	Onere semiche Mar	Aluminium eloxiert	natur	2 000
AXETUU	AX-AC-GIN-8-2000-PP	101632	untere seitliche Nut	Polypropylen	schwarz	2 000
	AX-AC-GIN-8-3000L-AL	101822	untere semiche nut	Aluminium eloxiert	natur	3 000
AXE110 AXE160	AX-AC-GIN-10-2000-AL	173218	Profiloberseite	Aluminium eloxiert	natur	2 000

6.6 Schmieranschlüsse

Die vorhandenen Schmiernippel der Linearachsen der Baureihen AXE können bei Bedarf durch abweichende Bauformen von Schmiernippeln oder durch Schlauchanschüsse gemäß der Tabellen 6.29 und 6.30 ersetzt werden.

Tabelle 6.29 _ Abmessungen der Schmieranschlüsse

Тур		Bezeichnung	ID - Nummer	MQ	D / Mq [mm]	B [mm]	N [mm]	L [mm]
Typ 1 Verlängerung	OM PM	LE-MQ-M6x22,4		М6	M6		13,0	22,4
Тур 2		PUSH-IN STR M5 D4_0910101	330240	M5	4		4,0	20,0
Steckver-	OM OM	LH-M6x5A-4	244379	M6	4		5,0	16,0
schraubung	N	LH-M6x5A-6	244380	M6	6		5,0	17,0
gerade	<u> </u>	Push-in fitting-M8x1-D6-straight	295839	M8x1	6		7,0	24,5
	L	PUSH-IN 90 M5 D4_0911095	352749	M5	4	17,5	4,0	21,0
		Push-in fitting-L-M5-D6	327405	M5	6	20,8	4,0	22,0
Typ 3 Winkelver-	OW	LH-M6x5S-4	270991	M6	4	18,0	5,0	22,5
schraubung		LH-M6x5S-6	262033	M6	6	21,0	5,0	22,0
		PUSH-IN-GIR.90 M8X1 TUBO4_3084731	311560	M8x1	4	21,5	8,0	24,0
	ØD	PUSH-IN 90 M8X1 D6 - HP_3084752	330086	M8x1	6	24,5	8,0	24,2

Tabelle 6.30 _ Zuordnung der Schmieranschlüsse

Linearachse	Bauform Standardschmiernippel		Тур 1 Тур 2			Тур 3							
		MQ	LE-MQ-M6x22,4	PUSH-IN STR M5 D4_0910101	Schlauchanschluss LH-M6x5A	Schlauchanschluss LH-M6x8A	Steckverschraubung- M8x1-D6-gerade	PUSH-IN 90 M5 D4_0911095	Steckverschraubung- L-M5-D6	Schlauchanschluss LH-M6x5S	Schlauchanschluss LH-M6x8S-4	PUSH-IN-GIR.90 M8X1 TUB04_3084731	PUSH-IN 90 M8X1 D6 - HP_3084752
AXE60Z	Kegelschmiernippel DIN 71412-A	M8x1					Х					Х	Х
AXE80Z	Kegelschmiernippel DIN 71412-A	M8x1					Х					Х	Х
AXE100Z	Kegelschmiernippel DIN 71412-A	M8x1					Х					Х	Х
AXE110Z	Kegelschmiernippel DIN 71412-A	M5		Х				Х	Χ				
AXE160Z	Kegelschmiernippel DIN 71412-A	M6	Х		X ¹					X ¹			
AXE40A	Trichterschmiernippel DIN 3405-A	M6			Х								
AXE60A	Trichterschmiernippel DIN 3405-A	M6				Χ					Х		

x montierbar

 x^1 nur in Verbindung mit Verlängerung Typ1 möglich

7. Mehrachssysteme

SNR – Linearachsen der Baureihe AXE ermöglichen es dem Anwender modulare Standard - Zwei- und Dreiachssysteme (Bild 7.1) mit sehr geringem Konstruktionsaufwand zu gestalten. Hierbei sind vielfältige Kombinationen der Linearachsen möglich. Die Standard - Achssysteme enthalten Energieketten und die notwendigen Verbindungselemente. Aus dem Zubehörprogramm (Kapitel 6) können zusätzlich Befestigungselemente, Getriebe, Antriebsadapter und Endschalter gewählt werden, um das System an die Erfordernisse der Anwendung optimal anzupassen.

Darüber hinaus ist es aber auch möglich Zwei- und Dreiachssysteme individuell zu gestalten.

Die Beschreibungen und die ID – Nummern der notwendigen Direkt-, Portal-, Kreuz- und A-Standardverbindungen und deren Kombinationsmöglichkeiten sowie den Antriebsadaptionen und weiteren Zubehörteilen sind im Kapitel 6 "Zubehör" enthalten.

Alle Standard – Achssysteme sind online konfigurierbar.

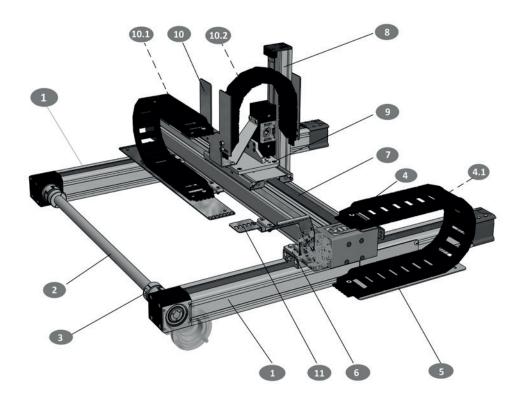


Bild 7.1 _____ Standard - Achssystem

7.1 Standard – Achssysteme

Bei den Standard – Achssystemen werden die SNR – Linearachsen zu Zwei – Achssystemen in X – Y – oder Y – Z – Anordnung oder Drei –Achssystemen kombiniert. Die Hublängen der Achsen sind entsprechend den Angaben in Kapitel 5.2.2 und 5.3.2 bis zur Maximallänge der Energieketten wählbar. Die Energieketten sind für Standardhublängen entsprechend Tabelle 7.1 in Kapitel 7.1.1 und Tabelle 7.2 in Kapitel 7.1.2 festgelegt. Durch Entfernen von Kettengliedern lassen sich die Energieketten an kürzere Hübe bzw. durch das Einfügen von weiteren Kettengliedern an längere Hübe anpassen.

Weitere Komponenten wie Getriebe, Motoradapter, Kupplungen für die Antriebe und Endschalter können entsprechend den Angaben in den Kapiteln 6.2 und 6.3 gewählt werden.

7.1.1. Standard - Achssystem A

Bei dem Standard – Achssystem A werden die SNR – Linearachsen AXE60Z, AXE110Z und AXE40A zu Zwei – Achssystemen in X – Y – oder Y – Z – Anordnung oder Drei – Achssystemen kombiniert.

Tabelle 7.1 enthält die notwendigen Komponenten zum Aufbau des Standard - Achssystems A.

Tabelle 7.1 __ Standard – Achssystem A

Acl	hssyste	em	Nr.		Achssyst	em A		
				Typenschlüssel	Beschreibung	ID-Nummer	Anzahl	Bemerkung
	X-Y			AXE60Z14-B-[Verfahrbereich]	Basisachse X	Kapitel 5.2.2	2	maximaler Verfahrbereich 2140 mm
	em.)		2	AX-AC-CHS-22-[Wellenlänge]	Verbindungswelle $L = Hub Y + 45 mm$	Kapitel 6.2.2	1	
	System.)		3	AX-AC-COU-CHS-22	Kupplungssatz Verbindungswelle	292876	2	
	Achs -		4	AX-AC-ECU-60-110Z	Energieketteneinheit X / Y	459259	1	Basislänge für X-Hub ≤ 1000 mm, kürzbar (60 mm Hub pro Kettenglied)
ı,	2-1		4.1	AX-AC-ECL-B15.5.075	zusätzliches E-Ketten-Glied für X-Achse	459261	max. 17	60 mm Hub je Kettenglied
Achs (-Z	- -		5	AX-AC-ECS-60X	E-Ketten Unterstützung	459272		für X - Hub > 1000 mm
ج ج \ج	Standard		6	AX-AC-DCU-60-110-E	Achsverbindung X-Y	459273	2	
Standard - System)	Sta	em	7	AXE110Z16-D-[Verfahrbereich]	Basisachse Y	Kapitel 5.2.2	1	maximaler Verfahrbereich 2060 mm
anda Sy:		System	8	AXC40A10-B-[Verfahrbereich]	Basisachse Z	Kapitel 5.3.2	1	
33			9	AX-AC-SCU-110-40	Achsverbindung Y-Z	327403	1	
		2 - Achs Y-Z	10	AX-AC-ECU-110-40A	Energieketteneinheit Y / Z	459275	1	Basislänge für Y-Hub 200500 mm und Z-Hub ≤ 200 mm, kürzbar (60 mm Hub pro Kettenglied)
		- -	10.1	AX-AC-ECL-B15.050.075	zusätzliches E-Ketten-Glied für Y-Achse	459266	max. 24	60 mm Hub je Kettenglied
		Standard	10.2	AX-AC-ECL-1400.020.075	zusätzliches E-Ketten-Glied für Z-Achse	459268	max. 11	60 mm Hub je Kettenglied
		Sta		AX-AC-CGU-A-Y	Leitungsführung Y - Achse	459276		Hub > 500 mm

7.1.2. Standard – Achssystem B

Bei dem Standard – Achssystem A werden die SNR – Linearachsen AXE80Z, AXE160Z und AXE60A zu Zwei – Achssystemen in X – Y – oder Y – Z – Anordnung oder Drei – Achssystemen kombiniert.

Tabelle 7.2 enthält die notwendigen Komponenten zum Aufbau des Standard – Achssystems B.

Tabelle 7.2 __ Standard - Achs - System B

Ac	chssyste	m	Nr.		Achssyst	em B		
				Typenschlüssel	Beschreibung	ID-Nummer	Anzahl	Bemerkung
	X-Y		1	AXE80Z20-B-[Verfahrbereich]	Basisachse X	Kapitel 5.2.2	2	maximaler Verfahrbereich 3540 mm
	em.)		2	AX-AC-CHS-28-[Wellenlänge]	Verbindungswelle $L = Hub Y + 37 mm$	Kapitel 6.2.2	1	
	System		3	AX-AC-COU-CHS-28	Kupplungsatz Verbindungswelle	153844	2	
	Achs -		4	AX-AC-ECU-80-160Z	Energieketteneinheit X / Y	459278	1	Basislänge für X-Hub 4802100 mm, kürzbar (92 mm Hub pro Kettenglied)
	2 - 7		4.1	AX-AC-ECL-2500.07.100.0	zusätzliches E-Ketten-Glied für X-Achse	289015	max. 16	92 mm Hub je Kettenglied
Achs -	- -		5	AX-AC-ECS-80X	E-Ketten Unterstützung	459279	max. 1	für X - Hub > 2100 mm
	Standard		6	AX-AC-DCU-80-160-E	Achsverbindung X-Y	459281	2	
- E	Sta	Z-,	7	AXE160Z25-D-[Verfahrbereich]	Basisachse Y	Kapitel 5.2.2	1	maximaler Verfahrbereich 3000 mm
Standard - System		em /	8	AXC60A14-B-[Verfahrbereich]	Basisachse Z	Kapitel 5.3.2	1	maximaler Verfahrbereich 2020 mm
Stano		- Achs - System Y-Z	9	AX-AC-SCU-160-60	Achsverbindung Y-Z	458059	1	
0)			10	AX-AC-ECU-160-60A	Energieketteneinheit Y / Z	459282	1	Basislänge für Y-Hub 4801020 mm und Z-Hub ≤ 520 mm, kürzbar (66 mm Y - Hub, 30 mm Z - Hub pro Kettenglied)
			10.1	AX-AC-ECL-1500.068.100.0	zusätzliches E-Ketten-Glied für Y-Achse	459270	max. 30	66 mm Hub je Kettenglied
		lard	10.2	AX-AC-ECL-B15i.050.100.0	zusätzliches E-Ketten-Glied für Z-Achse	459269	max. 50	30 mm Hub je Kettenglied
		Standard	1	AXE-AC-CGU-B-Y	Leitungsführung Y - Achse	459318		Hub ≥ 1140 mm (Empfehlung: +1 je 600 mm Hub)

7.2 Dynamische Belastbarkeit von Standard – Achssystem

Die dynamische Nutzlast von Achssystemen wird hauptsächlich durch die Verformung der Y – Achse, die durch die Dynamik der Z – Achse hervorgerufen wird, begrenzt. Im Diagramm in Bild 7.2 sind die Belastungsgrenzen der der Standard – Achssysteme in Abhängigkeit von den Hublängen der Y – und Z – Achsen und der zulässigen dynamischen Nutzlast. Anwendungen mit hohen Beschleunigungen über 5 m/s² sind für das Standard – Achssystem B nur bei kurzen Hüben der Z – Achsen sinnvoll. Bei der Ermittlung der dynamischen Nutzlast brauchen die Eigenmassen der bewegten Achsen nicht berücksichtigt werden.

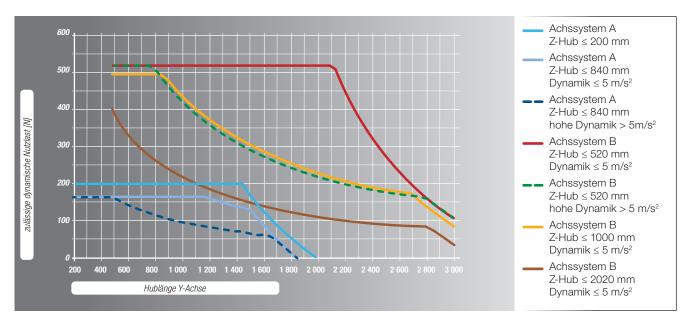


Bild 7.2 _____ dynamische Nutzlast von Standard – Achssystemen

Beispiel:

Last m: 10 kg

 y - Hub:
 1500 mm

 z - Hub:
 300 mm

 Beschleunigung a der z - Achse:
 25 m/s²

Dynamische Nutzlast: $P = m \times a$ $P = 10 \text{ kg} \times 25 \text{ m/s}^2$

P = 250 N

Im Diagramm in Bild 7.3, das auf die Kurven für hohe Dynamik reduziert wurde, liegt der Schnittpunkt von 1500 mm Hub der Y – Achse und 250 N dynamische Nutzlast nur unterhalb der Kurve für ein Achssystem B mit einem Z – Hub von \leq 520 mm. Somit ist diese Anwendung mit einem Achssystem B realisierbar.

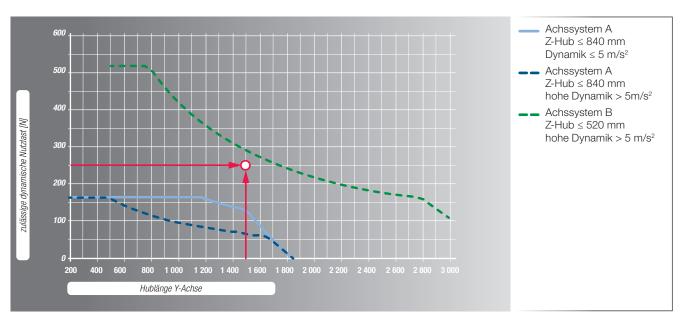


Bild 7.3____ dynamische Nutzlast von Standard – Achssystemen mit hoher Dynamik

7.3 Endschalterkombinationen für Standard – Achssysteme

Für Standard – Achssysteme sind die Endschalterkombinationen entsprechend Tabelle 7.3 festgelegt. Diese Schalterkombinationen können online konfiguriert werden.

Abweichende Endschalter oder Schalterkombinationen können als Einzelteile ausgewählt und ebenfalls online konfiguriert werden.

Tabelle 7.3 __ Endschalterkombinationen für Standard – Achssysteme

Beschreibung
ohne
2 Mechanische Schalter
2 Mechanische Schalter + 1 Referenzschalter PNP
2 Mechanische Schalter + 1 Referenzschalter NPN
2 Näherungsschalter + 1 Referenzschalter PNP
2 Näherungsschalter PNP-NC
1 Näherungsschalter PNP-NO
1 Näherungsschalter NPN-NO
2 Näherungsschalter NPN-NO
3 Näherungsschalter NPN-NO

8. Typenschlüssel

	1	
_1	AXE	Baureihe
2	60	Baugröße
3	Z	Antriebsart A: Zahnriemen mit angetriebenem Schlitten Z: Zahnriementrieb
4	14	Größenkennziffer zur Antriebsausführung bei Zahnriementrieb Durchmesser Hohlwelle
5	В	Führungssystem B: eine Linearführung, Standardtisch C: eine Linearführung, langer Tisch D: zwei parallele Linearführungen, Standardtisch
6	1000	Verfahrbereich [mm]

85

Typenverzeichnis / ID - Nummernliste 9.

Tabelle 9.1 enthält eine Übersicht der verwndeten Typenschlüssel und Tabelle 9.2 eine Übersicht der ID - Nummern der Zubehör- und

Tabelle 9.1 __ Typenverzeichnis

Typenschlüssel	Beschreibung	Seite
AXSP-CST	Abdeckband	35
AXSP-WPS	Verschleisteil-Set	35
AX-ACCOU-K	Klemmnabenkupplung	65
AX-ACCSW-	Betätigungselement für Endschalter	79
AX-ACDAD	Adapter für formschlüssige Getriebemontage	71
AX-ACDAE	Adapter für formschlüssige Getriebemontage	71
AX-ACPSH	Steckwellen	64
AX-ACSUN	Endschaltersatz	78, 79
AX-AC-ACU	Winkelverbindung	62, 63
AX-AC-CCO	Kupplung und Kupplungsglocke	72, 73
AX-AC-CCU	Kreuzverbindung	59
AX-AC-CHS	Verbindungswelle	66 - 68
AX-AC-COU-CHS	Kupplungseinheit Verbindungswelle	65
AX-AC-DCU	Direktverbindung	58
AX-AC-ECL	E-Ketten-Glied	83
AX-AC-ECS	E-Ketten Unterstützung	83
AX-AC-ECU	Energieketteneinheit	83
AX-AC-FST	Befestigungsleiste	56
AX-AC-GCU	Portalverbindung	60
AX-AC-GIN	Nutabdeckprofil	80
AX-AC-MAU-E	Motoradapter	70
AX-AC-PGE	Planetengetriebe	69, 71, 73
AX-AC-SBL	Nutenstein	57
AX-AC-SCU	A-Standardverbindung	61
AXE-AC-CGU	Leitungsführung	83

Tabelle 9.2 __ ID - Nummernliste

ID - Nummer	Typenschlüssel	Bezeichnung	Kapitel
01632	AX-AC-GIN-8-2000-PP	Nutabdeckprofil, Kunststoff	6.5
01822	AX-AC-GIN-8-3000L-AL	Nutabdeckprofil, Aluminium	6.5
01832	AX-AC-GIN-6-2000L-PP	Nutabdeckprofil, Kunststoff	6.5
01841	AX-AC-GIN-6-2000-AL	Nutabdeckprofil, Aluminium	6.5
01842	AX-AC-GIN-5-2000-PP	Nutabdeckprofil, Kunststoff	6.5
03758	AX-AC-SBL-5-M3-R-Zi	Nutenstein, Bauform R	6.1.2
08075	AX-AC-FST-70x20-2	Befestigungsleiste	6.1.1
08579	AX-AC-FST-40x10-3	Befestigungsleiste	6.1.1
08663	AX-AC-FST-40x13-2	Befestigungsleiste	6.1.1
09066	AX-AC-SBL-5ST-M3-E	Nutenstein, Bauform E	6.1.2
09070	AX-AC-SBL-5ST-M5-E	Nutenstein, Bauform E	6.1.2
09073	AX-AC-SBL-5ST-M4-E	Nutenstein, Bauform E	6.1.2
09091	AX-AC-SBL-6ST-M6-E	Nutenstein, Bauform E	6.1.2
09093	AX-AC-SBL-6ST-M5-E	Nutenstein, Bauform E	6.1.2
09094	AX-AC-SBL-6ST-M4-E	Nutenstein, Bauform E	6.1.2
10236	AX-AC-FST-78x22-2	Befestigungsleiste	6.1.1
39275	AX-AC-SBL-5ST-M5-E-A2	Nutenstein, Bauform E	6.1.2
49812	AX-AC-SBL-8-ST-M8-F	Nutenstein, Bauform F	6.1.2
50822	AX-AC-FST-47x7-2	Befestigungsleiste	6.1.1
51312	AX-AC-80-SUN-M1	Mechanischer Endschalter	6.3.5
51341	AX-AC-80ZA-COU-K-20	Klemmaben - Kupplung	6.2.2
52199	AX-AC-80-CSW-M1	Betätigungselement	6.3.5
52199	AX-AC-80-CSW-I	Betätigungselement	6.3.5
52348	AX-AC-80-CSW-I	Betätigungselement	6.3.5
52349	AX-AC-80Z-SUN-I2-NPN-NO-2m	Induktiver Näherungsschalter	6.3.5
52373	AX-AC-80ZA-PSH-S	Steckwelle	6.2.1
53844	AX-AC-80Z-C0U-CHS-28	Kupplungssatz für Verbindungswellen	6.2.2
53960	AX-AC-00Z-000-0n5-20	Steckwelle	6.2.1
54708	AX-AC-002A-F31-D	Induktiver Näherungsschalter	6.3.5
54897	AX-AC-160Z-CCO-A-20	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
56270	AX-AC-1602-000-A-20 AX-AC-40ZA-PSH-S	Steckwelle	6.2.1
	AX-AC-40ZA-F5N-5 AX-AC-SCU-80-60		6.1.6
56300	AX-AC-SCU-60-60 AX-AC-60-SUN-M2	A-Standardverbindung	6.3.5
56335		Mechanischer Endschalter	
56336	AX-AC-60-SUN-M3	Mechanischer Endschalter	6.3.5
56338	AX-AC-60-CSW-I	Betätigungselement	6.3.5
56339	AX-AC-60-CSW-M3	Betätigungselement	6.3.5
56339	AX-AC-60-CSW-I	Betätigungselement	6.3.5
56342	AX-AC-60Z-SUN-I2-PNP-NO-2m	Induktiver Näherungsschalter	6.3.5
56344	AX-AC-40-CSW-I	Betätigungselement	6.3.5
56345	AX-AC-40-SUN-I1-PNP-NO-5m	Induktiver Näherungsschalter	6.3.5
57296	AX-AC-uniA-SUN-M1-H	Mechanischer Endschalter	6.3.5
58669	AX-AC-60-CSW-M2	Betätigungselement	6.3.5
58840	AX-AC-CCU-80-60	Kreuzverbindung	6.1.4
60340	AX-AC-160Z-CC0-C-22	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
60635	AX-AC-CCU-60-60	Kreuzverbindung	6.1.4
60928	AX-AC-80ZA-CCO-A-19	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
60929	AX-AC-80ZA-CC0-A-20	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
60930	AX-AC-80ZA-CCO-A-24	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
60931	AX-AC-80ZA-CCO-A-25	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
60984	AX-AC-80ZA-CC0-B-19	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
60987	AX-AC-80ZA-CC0-B-20	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
31016	AX-AC-80ZA-CC0-C-20	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
61043	AX-AC-80ZA-CCO-D-16	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
61046	AX-AC-80ZA-CCO-E-22	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2

ID - Nummer	Typenschlüssel	Bezeichnung	Kapitel
61308	AX-AC-80ZA-CCO-F-20	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
61308	AX-AC-CC080-Z-A-GS20-F	Adapter für Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
61445	AX-AC-uni-SUN-I1-PNP-NC-5m	Induktiver Näherungsschalter	6.3.5
61447	AX-AC-uni-SUN-I1-NPN-NO-5m	Induktiver Näherungsschalter	6.3.5
62170	AX-AC-SUN-GRO-PNP-NC-10m	Induktiver Näherungsschalter	6.3.5
62173	AX-AC-SUN-GRO-NPN-NC-3m	Induktiver Näherungsschalter	6.3.5
62588	AX-AC-240+60A-SUN-M1-P	Mechanischer Endschalter	6.3.5
62684	AX-AC-80Z-SUN-I2-PNP-NC-2m	Induktiver Näherungsschalter	6.3.5
62687	AX-AC-80Z-SUN-I2-PNP-NO-2m	Induktiver Näherungsschalter	6.3.5
62717	AX-AC-SUN-GRO-PNP-NO-10m	Induktiver Näherungsschalter	6.3.5
63249	AX-AC-uniA-SUN-I2-PNP-NC-2m	Induktiver Näherungsschalter	6.3.5
63250	AX-AC-uniA-SUN-I2-NPN-NO-2m	Induktiver Näherungsschalter	6.3.5
		-	6.3.5
63252	AX-AC-uniA-SUN-I2-PNP-NO-2m	Induktiver Näherungsschalter	
63809	AX-AC-160Z-CCO-B-16	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
63869	AX-AC-160-CSW-M1	Betätigungselement	6.3.5
63876	AX-AC-160-SUN-M1	Mechanischer Endschalter	6.3.5
64451	AX-AC-110Z-SUN-M2	Mechanischer Endschalter	6.3.5
64457	AX-AC-110-CSW-M2	Betätigungselement	6.3.5
64469	AX-AC-110-SUN-M2	Mechanischer Endschalter	6.3.5
64502	AX-AC-110Z-CCO-C-16	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
65758	AX-AC-60ZA-DAD-C	Adapter für formschlüssige Getriebemontage	6.2.3.1
66836	AX-AC-60Z-SUN-I2-NPN-NO-2m	Induktiver Näherungsschalter	6.3.5
66852	AX-AC-60Z-SUN-I2-PNP-NC-2m	Induktiver Näherungsschalter	6.3.5
67332	AX-AC-DCU-80-160	Direktverbindung	6.1.3
68623	AX-AC-80ZA-DAD-E	Adapter für formschlüssige Getriebemontage	6.2.3.1
69154	AX-AC-GCU-80-160	Portalverbindung	6.1.5
69160	AX-AC-CCU-160-80	Kreuzverbindung	6.1.4
69893	AX-AC-60ZA-CCO-A-16	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
71476	AX-AC-80ZA-COU-K-18	Klemmnaben - Kupplung	6.2.2
71711	AX-AC-60ZA-CCO-E-19	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
71712	AX-AC-60ZA-CCO-E-20	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
73137	AX-AC-160Z-CC0-D-20	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
73137	AX-AC-CC0160-Z-D	Adapter für Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
73218	AX-AC-GIN-10-2000-AL	Nutabdeckprofil, Aluminium	6.5
	AX-AC-GIN-10-2000-AL		6.5
73218		Nutabdeckprofil, Aluminium Direktverbindung	6.1.3
73421	AX-AC-DCU-60-110	Ŭ	
83464	AX-AC-110Z-CC0-E-14	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
83464	AX-AC-CC0110-Z-MP060	Adapter für Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
83942	AX-AC-SBL-8-ST-M6-F	Nutenstein, Bauform F	6.1.2
84826	AX-AC-80ZA-COU-K-25	Klemmnaben - Kupplung	6.2.2
85644	AX-AC-60ZA-COU-K-20	Klemmnaben - Kupplung	6.2.2
85836	AX-AC-160Z-CCO-E-25	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
85844	AX-AC-160Z-CCO-E-30	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
86857	AX-AC-40ZA-CCO-A-09	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
86859	AX-AC-40ZA-CCO-A-08	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
87109	AX-AC-40-SUN-I1-NPN-NO-5m	Induktiver Näherungsschalter	6.3.5
87110	AX-AC-40-SUN-I1-PNP-NC-5m	Induktiver Näherungsschalter	6.3.5
87161	AX-AC-60ZA-CCO-I-14	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
87161	AX-AC-CC060-Z-A-G14-I	Adapter für Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
87181	AX-AC-80ZA-COU-K-16	Klemmnaben - Kupplung	6.2.2
87286	AX-AC-80ZA-DAD-A	Adapter für formschlüssige Getriebemontage	6.2.3.1
87407	AX-AC-60ZA-PSH-S	Steckwelle	6.2.1
88209	AX-AC-60ZA-COU-K-14	Klemmnaben - Kupplung	6.2.2
88260	AX-AC-uniA-CSW-H	Betätigungselement	6.3.5
88300	AX-AC-uniA-CSW-I	Betätigungselement	6.3.5

ID - Nummer	Typenschlüssel	Bezeichnung	Kapitel
188958	AX-AC-60ZA-COU-K-19	Klemmnaben - Kupplung	6.2.2
189202	AX-AC-60ZA-PSH-D	Steckwelle	6.2.1
190466	AX-AC-60ZA-DAD-A	Adapter für formschlüssige Getriebemontage	6.2.3.1
203284	AX-AC-160Z-COU-K-30	Klemmnaben - Kupplung	6.2.2
203284	AX-AC-160Z-COU-K-38	Klemmnaben - Kupplung	6.2.2
203392	AX-AC-SBL-6ST-M6-E-A2	Nutenstein, Bauform E	6.1.2
206005	AX-AC-160Z-PSH-S	Steckwelle	6.2.1
207896	AX-AC-DCU-80-120	Direktverbindung	6.1.3
207936	AX-AC-DCU-110-110	Direktverbindung	6.1.3
230147	AX-AC-DCU-60-60	Direktverbindung	6.1.3
230361	AX-AC-GCU-60-110	Portalverbindung	6.1.5
230511	AX-AC-60ZA-COU-K-16	Klemmnaben - Kupplung	6.2.2
230960	AX-AC-80ZA-CCO-B-25	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
233232	AX-AC-60ZA-COU-K-10	Klemmnaben - Kupplung	6.2.2
238803	AX-AC-160Z-COU-K-22	Klemmnaben - Kupplung	6.2.2
239690	AX-AC-40ZA-DAD-C	Adapter für formschlüssige Getriebemontage	6.2.3.1
244379	LH-M6x5A-4	Steckverschraubung gerade	6.6
244380	LH-M6x5A-6	Steckverschraubung gerade	6.6
244920	AX-AC-80ZA-CCO-C-14	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
245820	AX-AC-60A-CSW-P	Betätigungselement	6.3.5
245820	AX-AC-60A-CSW-P	Betätigungselement	6.3.5
247474	AX-AC-80ZA-COU-K-22	Klemmnaben - Kupplung	6.2.2
251324	AX-AC-160Z-COU-K-20	Klemmnaben - Kupplung	6.2.2
251343	AX-AC-80ZA-COU-K-14	Klemmnaben - Kupplung	6.2.2
251662	AX-AC-80ZA-COU-K-19	Klemmnaben - Kupplung	6.2.2
252537	AX-AC-CCU-110-60	Kreuzverbindung	6.1.4
253556	AX-AC-CCU-80-80	Kreuzverbindung	6.1.4
253672	AX-AC-110Z-CC0-F-20	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
255069	AX-AC-SBL-6-ST-M4-F	Nutenstein, Bauform F	6.1.2
255070	AX-AC-SBL-6-ST-M6-F	Nutenstein, Bauform F	6.1.2
257591	AX-AC-80ZA-COU-K-12	Klemmnaben - Kupplung	6.2.2
258785	AX-AC-SBL-8-ST-M5-F	Nutenstein, Bauform F	6.1.2
259405	AX-AC-CCU-110-110	Kreuzverbindung	6.1.4
262033	LH-M6x5S-6	Winkelverschraubung	6.6
264974	AX-AC-CCU-160-160	Kreuzverbindung	6.1.4
265454	AX-AC-GCU-60-160	Portalverbindung	6.1.5
265455	AX-AC-CCU-160-60	Kreuzverbindung	6.1.4
267710	AX-AC-ACU-Y160-Z110T	Winkelverbindung	6.1.7
268344	AX-SP-110-A-WPS	Verschleißteilset	4.9
268345	AX-SP-160-A-WPS	Verschleißteilset	4.9
268606	AX-AC-SCU-110-60	A-Standardverbindung	6.1.6
269049	AX-AC-ACU-Y160-Z110P	Winkelverbindung	6.1.7
270991	LH-M6x5S-4	Winkelverschraubung	6.6
281274	AX-AC-DCU-110-60	Direktverbindung	6.1.3
284121	AX-AC-100Z-COU-CHS-38	Kupplungssatz für Verbindungswellen	6.2.2
286227	AX-AC-ACU-X160-Y110P	Winkelverbindung	6.1.7
288848	AX-AC-DCU-160-80	Direktverbindung	6.1.3
289015	AX-AC-ECL-2500.07.100.0	E-Ketten-Glied	7.1.1
289073	AX-AC-SBL-5ST-M4-E-A2	Nutenstein, Bauform E	6.1.2
292876	AX-AC-60Z-COU-CHS-22	Kupplungssatz für Verbindungswellen	6.2.2
295839	Push-in fitting-M8x1-D6-straight	Steckverschraubung gerade	6.6
299881	AX-AC-SCU-60-40	A-Standardverbindung	6.1.6
304052	AX-AC-160Z-C0U-K-25	Klemmnaben - Kupplung	6.2.2
306559	AX-AC-ACU-X160-Y160	Winkelverbindung	6.1.7
306666	AX-AC-ACU-160-160-2	Winkelverbindung	6.1.7

ID - Nummer	Typenschlüssel	Bezeichnung	Kapitel
308746	AX-AC-110Z-PSH-S	Steckwelle	6.2.1
308879	AX-AC-DCU-160-160	Direktverbindung	6.1.3
308887	AX-AC-110Z-CCO-A-20	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
11560	PUSH-IN-GIR.90 M8X1 TUB04_3084731	Winkelverschraubung	6.6
327403	AX-AC-SCU-110-40	A-Standardverbindung	6.1.6
327405	Push-in fitting- L-M5-D6	Winkelverschraubung	6.6
330086	PUSH-IN 90 M8X1 D6 - HP_3084752	Winkelverschraubung	6.6
330240	PUSH-IN STR M5 D4_0910101	Steckverschraubung gerade	6.6
351593	AX-AC-CCU-160-110	Kreuzverbindung	6.1.4
351638	AX-AC-100-CSW-I	Betätigungselement	6.3.5
352749	PUSH-IN 90 M5 D4_0911095	Winkelverschraubung	6.6
353280	AX-AC-SBL-6-ST-M5-F	Nutenstein, Bauform F	6.1.2
853357	AX-AC-100-SUN-M1	Mechanischer Endschalter	6.3.5
353806	AX-AC-100Z-SUN-I2-PNP-NC-2m	Induktiver Näherungsschalter	6.3.5
353808	AX-AC-100Z-SUN-I2-NPN-NO-2m	Induktiver Näherungsschalter	6.3.5
53810	AX-AC-100Z-SUN-I2-PNP-NO-2m	Induktiver Näherungsschalter	6.3.5
57642		-	6.1.3
63425	AX-AC-DCU-160-110	Direktverbindung Winkelverbindung	6.1.7
	AX-AC-ACU-Y110-Z110	Winkelverbindung Winkelverbindung	
373054	AX-AC-ACU-X160-Y110T	Winkelverbindung	6.1.7
82288	AX-AC-DCU-160-60	Direktverbindung	6.1.3
82293	AX-AC-ACU-110-110	Winkelverbindung	6.1.7
82301	AX-AC-ACU-Y160-Z160	Winkelverbindung	6.1.7
00616	AX-AC-100Z-CCO-A-20	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
00748	AX-AC-100Z-CC0-B-30	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
00753	AX-AC-100Z-CCO-A-25	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
00753	AX-AC-CC0100-Z-G25-A	Adapter für Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
00756	AX-AC-100Z-CC0-C-22	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
.00760	AX-AC-100Z-DAE-B	Adapter für formschlüssige Getriebemontage	6.2.3.1
05675	AX-AC-40A-SUN-M2	Mechanischer Endschalter	6.3.5
05715	AX-AC-40A-SUN-I2-PNP-NC-2m	Induktiver Näherungsschalter	6.3.5
05716	AX-AC-40A-SUN-I2-NPN-NO-2m	Induktiver Näherungsschalter	6.3.5
05717	AX-AC-40A-SUN-I2-PNP-NO-2m	Induktiver Näherungsschalter	6.3.5
05731	AX-AC-40A-CSW-M2	Betätigungselement	6.3.5
06342	AX-AC-100-CSW-M1	Betätigungselement	6.3.5
06342	AX-AC-100-CSW-I	Betätigungselement	6.3.5
09338	AX-AC-100Z-DAE-A	Adapter für formschlüssige Getriebemontage	6.2.3.1
09353	AX-AC-110Z-C0U-K-12	Klemmnaben - Kupplung	6.2.2
09354	AX-AC-110Z-C0U-K-20	Klemmnaben - Kupplung	6.2.2
09355	AX-AC-110Z-C0U-K-22	Klemmaben - Kupplung Klemmaben - Kupplung	6.2.2
.09633	AX-AC-100Z-PSH-D	Steckwelle	6.2.1
09634	AX-AC-100Z-PSH-S	Steckwelle	6.2.1
09852	AX-AC-100Z-CCO-B-25	Antriebsadaption mit Kupplung und Kupplungsglocke	6.2.3.2
10937	AX-AC-100Z-DAE-C	Adapter für formschlüssige Getriebemontage	6.2.3.1
49876	AX-AC-40ZA-PSH-D	Steckwelle	6.2.1
58059	AX-AC-SCU-160-60	A-Standardverbindung	6.1.6
59259	AX-AC-ECU-60-110Z	Energieketteneinheit	7.1.1
59261	AX-AC-ECL-B15.5.075	E-Ketten-Glied	7.1.1
59266	AX-AC-ECL-B15.050.075	E-Ketten-Glied	7.1.1
59268	AX-AC-ECL-1400.020.075	E-Ketten-Glied	7.1.1
59269	AX-AC-ECL-B15i.050.100.0	E-Ketten-Glied	7.1.1
59270	AX-AC-ECL-1500.068.100.0	E-Ketten-Glied	7.1.1
59272	AX-AC-ECS-60X	E-Ketten Unterstützung	7.1.1
59273	AX-AC-DCU-60-110-E	Direktverbindung für Standardachssysteme	7.1.1
159275	AX-AC-ECU-110-40A	Energieketteneinheit	7.1.1
159276	AX-AC-CGU-A-Y	Leitungsführung	7.1.1

ID - Nummer	Typenschlüssel	Bezeichnung	Kapitel
459278	AX-AC-ECU-80-160Z	Energieketteneinheit	7.1.1
459279	AX-AC-ECS-80X	E-Ketten Unterstützung	7.1.1
459281	AX-AC-DCU-80-160-E	Direktverbindung für Standardachssysteme	7.1.1
459282	AX-AC-ECU-160-60A	Energieketteneinheit	7.1.1
459318	AX-AC-CGU-B-Y	Leitungsführung	7.1.1
459772	AX-SP-CST-U-19,0-1M	Abdeckband	4.9
459876	AX-AC-ACU-X110-Y110	Winkelverbindung	6.1.7
461092	AX-SP-CST-U-19,0-2M	Abdeckband	4.9
461093	AX-SP-CST-U-19,0-3M	Abdeckband	4.9
461094	AX-SP-CST-U-19,0-4M	Abdeckband	4.9
461096	AX-SP-CST-U-19,0-5M	Abdeckband	4.9
461097	AX-SP-CST-U-19,0-6M	Abdeckband	4.9
461098	AX-SP-CST-U-19,0-7M	Abdeckband	4.9
468209	AX-AC-MAU-E63-B40-D9x20-M4-C9	Motoradapter	6.2.3
468215	AX-AC-MAU-E63-B40-D9x20-M5-C14	Motoradapter	6.2.3
468217	AX-AC-MAU-E95-B50-D14x30-M6-C14	Motoradapter	6.2.3
468218	AX-AC-MAU-E70-B50-D14x30-M5-C14	Motoradapter	6.2.3
468219	AX-AC-MAU-E75-B60-D14x30-M5-C14	Motoradapter	6.2.3
468220	AX-AC-MAU-E95-B50-D14x30-M6-C19	Motoradapter	6.2.3
468221	AX-AC-MAU-E70-B50-D14x30-M5-C19	Motoradapter	6.2.3
468223	AX-AC-MAU-E90-B70-D19x40-M5-C19	Motoradapter	6.2.3
468225	AX-AC-MAU-E100-B80-D19x40-M6-C19	Motoradapter	6.2.3
468226	AX-AC-MAU-E115-B95-D19x40-M8-C19	Motoradapter	6.2.3
468228	AX-AC-MAU-E75-B60-D11x23-M5-C19	Motoradapter	6.2.3
468229	AX-AC-MAU-E75-B60-D14x30-M5-C19	Motoradapter	6.2.3
468230	AX-AC-MAU-E100-B80-D14x30-M6-C19	Motoradapter	6.2.3
468231	AX-AC-MAU-E75-B60-D14x30-M5-C24	Motoradapter	6.2.3
468232	AX-AC-MAU-E95-B50-D14x30-M6-C24	Motoradapter	6.2.3
468233	AX-AC-MAU-E100-B80-D14x30-M6-C24	Motoradapter	6.2.3
468235	AX-AC-MAU-E115-B95-D19x40-M8-C24	Motoradapter	6.2.3
468240	AX-AC-MAU-E130-B110-D19x40-M8-C24	Motoradapter	6.2.3
468327	AX-AC-MAU-E130-B110-D24x50-M8-C24	Motoradapter	6.2.3
468329	AX-AC-MAU-E130-B95-D19x40-M8-C24	Motoradapter	6.2.3
468331	AX-AC-MAU-E130-B95-D24x50-M8-C24	Motoradapter	6.2.3
468332	AX-AC-PGE040-010-C9	Planetengetriebe	6.2.3
468334	AX-AC-PGE060-010-C14	Planetengetriebe	6.2.3
468335	AX-AC-PGE060-005-C19	Planetengetriebe	6.2.3
468336	AX-AC-PGE080-005-C19	Planetengetriebe	6.2.3
468337	AX-AC-PGE080-010-C19	Planetengetriebe	6.2.3
468338	AX-AC-PGE115-005-C24	Planetengetriebe	6.2.3
468339	AX-AC-PGE115-010-C24	Planetengetriebe	6.2.3
auf Anfrage	AX-AC-100Z-COU-K-20	Klemmnaben - Kupplung	6.2.2
auf Anfrage	AX-AC-100Z-COU-K-22	Klemmnaben - Kupplung	6.2.2
auf Anfrage	AX-AC-100Z-COU-K-25	Klemmnaben - Kupplung	6.2.2
auf Anfrage	AX-AC-100Z-COU-K-30	Klemmnaben - Kupplung	6.2.2
auf Anfrage	AX-AC-100Z-COU-K-38	Klemmnaben - Kupplung	6.2.2
auf Anfrage	AX-AC-110Z-C0U-K-25	Klemmnaben - Kupplung	6.2.2

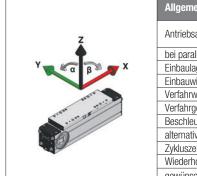
10. Passungen

Wellenpassungen [µm]

über	bis	d9	e8	f7	f6	f5	g6	g5	h5	h6	h7	h8	h9	h10	
	3	-20	-14	-6	-6	-6	-2	-2	0	0	0	0	0	0	
-	3	-45	-28	-16	-12	-10	-8	-6	-4	-6	-10	-14	-25	-40	
3	6	-30	-20	-10	-10	-10	-4	-4	0	0	0	0	0	0	
3	6	-60	-38	-22	-18	-15	-12	-9	-5	-8	-12	-18	-30	-48	
6	10	-40	-25	-13	-13	-13	-5	-5	0	0	0	0	0	0	
O	10	-76	-47	-28	-22	-19	-14	-11	-6	-9	-15	-22	-36	-58	
10	18	-50	-32	-16	-16	-16	-6	-6	0	0	0	0	0	0	
10	10	-93	-59	-34	-27	-24	-17	-14	-8	-11	-18	-27	-43	-70	
18	30	-65	-40	-20	-20	-20	-7	-7	0	0	0	0	0	0	
10	30	-117	-73	-41	-33	-29	-20	-16	-9	-13	-21	-33	-52	-84	
30	50	-80	-50	-25	-25	-25	-9	-9	0	0	0	0	0	0	
30	30	-142	-89	-50	-41	-36	-25	-20	-11	-16	-25	-39	-62	-100	
50	80	-100	-60	-30	-30	-30	-10	-10	0	0	0	0	0	0	
30	00	-174	-106	-60	-49	-43	-29	-23	-13	-19	-30	-46	-74	-120	
80	120	-120	-72	-36	-36	-36	-12	-12	0	0	0	0	0	0	
00	120	-207	-126	-71	-58	-51	-34	-27	-15	-22	-35	-54	-87	-140	
120	180	-145	-85	-43	-43	-43	-14	-14	0	0	0	0	0	0	
120	100	-245	-148	-83	-68	-61	-39	-32	-18	-25	-40	-63	-100	-160	
180	250	-170	-100	-50	-50	-50	-15	-15	0	0	0	0	0	0	
100	230	-285	-172	-96	-79	-70	-44	-35	-20	-29	-46	-72	-115	-185	
250	315	-190	-110	-56	-56	-56	-17	-17	0	0	0	0	0	0	
200	313	-320	-191	-108	-88	-79	-49	-40	-23	-32	-52	-81	-130	-210	
315	400	-210	-125	-62	-62	-62	-18	-18	0	0	0	0	0	0	
310	400	-350	-214	-119	-98	-87	-54	-43	-25	-36	-57	-89	-140	-230	

Bohrungspassungen [µm]

über	bis	D10	E 9	F6	F7	F8	G6	G7	H5	Н6	H7	Н8	Н9	H10	
	3	+60	+39	+12	+16	+20	+8	+12	+4	+6	+10	+14	+25	+40	
-	3	+20	+14	+6	+6	+10	+2	+2	0	0	0	0	0	0	
3	6	+78	+50	+18	+22	+28	+12	+16	+5	+8	+12	+18	+30	+48	
3	U	+30	+20	+10	+10	+10	+4	+4	0	0	0	0	0	0	
6	10	+98	+61	+22	+28	+35	+14	+20	+6	+9	+15	+22	+36	+58	
Ö	10	+40	+25	+13	+13	+13	+5	+5	0	0	0	0	0	0	
10	18	+120	+75	+27	+34	+43	+17	+24	+8	+11	+18	+27	+43	+70	
10	10	+50	+32	+16	+16	+16	+6	+6	0	0	0	0	0	0	
18	30	+149	+92	+33	+41	+53	+20	+28	+9	+13	+21	+33	+52	+84	
10	30	+65	+40	+20	+20	+20	+7	+7	0	0	0	0	0	0	
30	50	+180	+112	+41	+50	+64	+25	+34	+11	+16	+25	+39	+62	+100	
30	30	+80	+50	+25	+25	+25	+9	+9	0	0	0	0	0	0	
50	80	+220	+134	+49	+60	+76	+29	+40	+13	+19	+30	+46	+74	+120	
50	00	+100	+60	+30	+30	+30	+10	+10	0	0	0	0	0	0	
80	120	+260	+159	+58	+71	+90	+34	+47	+15	+22	+35	+54	+87	+140	
00	120	+120	+72	+36	+36	+36	+12	+12	0	0	0	0	0	0	
120	100	+305	+185	+68	+83	+106	+39	+54	+18	+25	+40	+63	+100	+160	
120	180	+145	+85	+43	+43	+43	+14	+14	0	0	0	0	0	0	
180	250	+335	+215	+79	+96	+122	+44	+61	+20	+29	+46	+72	+115	+185	
100	200	+170	+110	+50	+50	+50	+15	+15	0	0	0	0	0	0	
250	315	+400	+240	+88	+108	+137	+49	+69	+23	+32	+52	+81	+130	+210	
230	313	+190	+110	+56	+56	+56	+17	+17	0	0	0	0	0	0	
215	400	+440	+265	+98	+119	+151	+54	+75	+25	+36	+57	+89	+140	+230	
315	400	+210	+125	+62	+62	+62	+18	+18	0	0	0	0	0	0	


h11	js5	js6	j5	j6	k5	k6	m5	m6	n5	n6	p6	р5	über	bis
0	+2	+3	+2	+4	+4	+6	+6	+8	+8	+10	+12	+10		3
-60	-2	-3	-2	-2	0	0	+2	+2	+4	+4	+6	+6	-	3
0	+ 2.5	+4	+3	+6	+6	+9	+9	+12	+13	+16	+20	+17	3	6
-75	- 2.5	-4	-2	-2	+1	+1	+4	+4	+8	+8	+12	+12	J	U
0	+3	+ 4.5	+4	+7	+7	+10	+12	+15	+16	+19	+24	+21	6	10
-90	-3	- 4.5	-2	-2	+1	+1	+6	+6	+10	+10	+15	+15	0	10
0	+4	+ 5.5	+5	+8	+9	+12	+15	+18	+20	+23	+29	+26	10	18
-110	-4	- 5.5	-3	-3	+1	+1	+7	+7	+12	+12	+18	+18	10	10
0	+ 4.5	+ 6.5	+5	+9	+11	+15	+17	+21	+24	+28	+35	+31	18	30
-130	- 4.5	- 6.5	-4	-4	+2	+2	+8	+8	+15	+15	+22	+22	10	30
0	+ 5.5	+8	+6	+11	+13	+18	+20	+25	+28	+33	+42	+37	30	50
-160	- 5.5	-8	-5	-5	+2	+2	+9	+9	+17	+17	+26	+26		30
0	+ 6.5	+ 9.5	+6	+12	+15	+21	+24	+30	+33	+39	+51	+45	50	80
-190	- 6.5	- 9.5	-7	-7	+2	+2	+11	+11	+20	+20	+32	+32		00
0	+ 7.5	+11	+6	+13	+18	+25	+28	+35	+38	+45	+59	+52	80	120
-220	- 7.5	-11	-9	-9	+3	+3	+13	+13	+23	+23	+37	+37		120
0	+9	+ 12.5	+7	+14	+21	+28	+33	+40	+45	+52	+68	+61	120	180
-250	-9	- 12.5	-11	-11	+3	+3	+15	+15	+27	+27	+43	+43	120	100
0	+10	+ 14.5	+7	+16	+24	+33	+37	+46	+51	+60	+79	+70	180	250
-290	-10	- 14.5	-13	-13	+4	+4	+17	+17	+31	+31	+50	+50	100	200
0	+ 11.5	+16	+7	+16	+27	+36	+43	+52	+57	+66	+88	+79	250	315
-320	- 11.5	-16	-16	-16	+4	+4	+20	+20	+34	+34	+56	+56	230	010
0	+ 12.5	+18	+7	+18	+29	+40	+46	+57	+62	+73	+98	+87	315	400
-360	- 12.5	-18	-18	-18	+4	+4	+21	+21	+37	+37	+62	+62	010	100

JS7	JS6	J7	J6	K6	K7	М6	M7	N6	N7	N9	P7	P9	über	bis
+5	+3	+4	+2	0	0	-2	-2	-4	-4	-4	-6	-6		3
-5	-3	-6	-4	-6	-10	-8	-12	-10	-14	-29	-16	-31	-	3
+6	+4	+6	+5	+2	+3	-1	0	-5	-4	0	-8	-12	3	6
-6	-4	-6	-3	-6	-9	-9	-12	-13	-16	-30	-20	-42		0
+ 7.5	+ 4.5	+8	+5	+2	+5	-3	0	-7	-4	0	-9	-15	6	10
- 7.5	- 4.5	-7	-4	-7	-10	-12	-15	-16	-19	-36	-24	-51		10
+9	+ 5.5	+10	+6	+2	+6	-4	0	-9	-5	0	-11	-18	10	18
-9	- 5.5	-8	-5	-9	-12	-15	-18	-20	-23	-43	-29	-61	10	10
+ 10.5	+ 6.5	+12	+8	+2	+6	-4	0	-11	-7	0	-14	-22	18	30
- 10.5	- 6.5	-9	-5	-11	-15	-17	-21	-24	-28	-52	-35	-74	10	30
+ 12.5	+8	+14	+10	+3	+7	-4	0	-12	-8	0	-17	-26	30	50
- 12.5	-8	-11	-6	-13	-18	-20	-25	-28	-33	-62	-42	-88	30	30
+15	+ 9.5	+18	+13	+4	+9	-5	0	-14	-9	0	-21	-32	50	80
-15	- 9.5	-12	-6	-15	-21	-24	-30	-33	-39	-74	-51	-106	30	00
+ 17.5	+11	+22	+16	+4	+10	-6	0	-16	-10	0	-24	-37	80	120
- 17.5	-11	-13	-6	-18	-25	-28	-35	-38	-45	-87	-59	-124	00	120
+20	+ 12.5	+26	+18	+4	+12	-8	0	-20	-12	0	-28	-43	120	180
-20	- 12.5	-14	-7	-21	-28	-33	-40	-45	-52	-100	-68	-143	120	100
+23	+ 14.5	+30	+22	+5	+13	-8	0	-22	-14	0	-33	-50	180	250
-23	- 14.5	-16	-7	-24	-33	-37	-46	-51	-60	-115	-79	-165	100	200
+26	+16	+36	+25	+5	+16	-9	0	-25	-14	0	-36	-56	250	315
-26	-16	-16	-7	-27	-36	-41	-52	-57	-66	-130	-88	-186	200	313
+ 28.5	+18	+39	+29	+7	+17	-10	0	-26	-16	0	-41	-62	315	400
- 28.5	-18	-18	-7	-29	-40	-46	-57	-62	-73	-140	-98	-202	515	400

11. Anfragehilfe

Firma		Datur	n
			S
Anschrift			
Telefon	Fax		
E-mail			
Einmaliger Bedarf			
Serienbedarf			
	Wunschtermin für:	Stück	KW
Neukonstruktion	_ja / nein		
Kostenreduzierung	Budget	Euro	
Alternative zum Wettbewerb	Wettbewerbsprodukt		
Technische Verbesserung	bisherige Lösung		

Anwendungsparameter

Allgemeine Anwendungspar	ameter	Einzelachse	X	lehrachssyste Y	m Z
Antriebsart	Zahnriementrib				
Anthebsart	Zahnriemen - Ω - Antrieb				
bei parallelen Achsen: Achsabst	and [mm]				
Einbaulage: Horizontal/Vertikal					
Einbauwinkel ∝/β [°]					
Verfahrweg / Hub [mm]					
Verfahrgeschwindigkeit [m/s]					
Beschleunigung [m/s ²]					
alternativ - Verfahrzeit [s]					
Zykluszeit [s]					
Wiederholgenauigkeit [mm]					
gewünschte Lebensdauer [h]					
Einsatzbedigungen (Staub, Sprit	zwasser)				

				Lage des M	assenschwerpu	nkt
*	Masse [kg]		ngs nm] X _{min}	quer [mm] y	senkrecht [mm] z	Bemerkungen
N N						
				Lage des K	raftangriffspunk	rts
EAR	Kraft [N]	läı [m X _{max}	ngs nm] X _{min}	quer [mm] y	senkrecht [mm] z	Bemerkungen
Kraftrichtung X			ĺ			
Kraftrichtung Y						
Kraftrichtung Z						

	Für komplexere Anwendungen bitte	Zeichnungen / Skizzen / Verfahrzyklus b	eilegen.	
Bemerkungen / Skizze:				

12. Indexverzeichnis

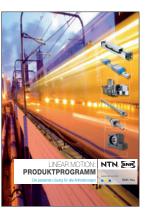
Α		F	
A - Standardverbindung	61,82	Führungssysteme	
Abdeckband		Linearführung	
Austausch Abdeckband	35		
Bandumlenkung		G	
Anfragehilfe		Getriebe21-24	4, 69-73
Antriebsauslegung		Planetengetriebe 21-24	4, 69-7
Antriebskopf6, 21, 22, 27-2		Getriebeauswahl	1
Antriebskopf mit seitlichen Schmiernippeln		Maximale Betriebsdrehzahl	1
Antriebsoptionen		Maximales Beschleunigungsmoment	1
Antriebsadapter		Nenndrehmoment am Antrieb	1
Formschlüssige Montage der Planetengetriebe	21,71		
Kraftschlüssige Planetengetriebemontage mit		Н	
Kupplung und Kupplungsglocke		Hauptparameter	3
Kupplungen und Verbindungswellen 2	21, 22, 24, 65-68	1/	
Planetengetriebe	21-24, 68-72	K	
Steckwellen	64	Koordinatensystem	
Anzugsmomente	20	Kreuzverbindung	
Anzugsmomente der Kupplungsnaben	20	Kupplungen	
Anzugsmomente für Motormontage	20	Kupplungsglocken	
Antriebssysteme	7, 8	Kupplungssatz für Verbindungswellen	6
Zahnriemenantrieb	7, 8	L	
äquivalente Belastung	12	-	1/
Aufbau	38, 50	Laboradayar	
Aufwahlkriterien	9	Lebensdauer	
		Nominelle Lebensdauer	
В		Linearführung8, 12, 31	1, 33, 3
Basisprofil	6	М	
Profil mit verschraubten Führungsschienen	6	Messvorrichtung zur Zahnriemenspannung	,
Befestigungsleisten	19, 35, 56, 58	Mehrachssysteme	
Belastbarkeit	12, 18, 49, 55	Standardachssysteme	
Dynamische Belastbarkeit	12, 18, 49, 55	Montage	
Statische Belastbarkeit	12, 18, 49, 55	Gestaltung Montageflächen	
Bestimmungsgemäße Verwendung		Formschlüssige Montage von Planetengetrieben	
Betätigungselement	25-29, 74, 79	Kraftschlüssige Montage von Kupplungen	
Betriebstemperatur	11	Montage Getriebeflansch	
		Montage von Endschaltern	
D		Montage von Endschaltern am Antriebskopf	
Direktverbindung		von Linearachsen AXE_A mit bewegtem Profil	28
Dynamische Belastbarkeit		Montage von Endschaltern am Profil von Linearachsen	
Dynamische Betriebslast14, 18, 3	37, 39-47, 52, 53	AXE_A mit bewegtem Antriebskopf	29
		Montage von Endschaltern für Linearachsen AXE_Z	2
E		Montage von Schaltern für Linearachsen AXE110Z und	
Efficiency Line Achsen	38, 50	Näherungsschaltern für AXE160Z	
Efficiency Line Achsen mit Zahnriemenantrieb	38	Montage von induktiven Näherungsschaltern zum Nuteinbau _	
Efficiency Line Achsen mit Zahnriemen - $\boldsymbol{\Omega}$ - Antrieb	50	Montage von parallelen Linearachsen	
Einbauerklärung	10	Montage von parallelen Linearachsen mit Verbindungswellen _	2
Energieketten	80, 82, 83	Montage von Planetengetrieben über Kupplung	0.
Enflussfaktoren	12, 31, 34	und Kupplungsglocke	
		Montageanleitung	
		Montagetoleranzen	
		Motormontage	24

N		Typenschlüssel Kreuzverbindung	5
Nominelle Lebensdauer	12	Typenschlüssel Kupplungssatz für Verbindungswellen	
Normen		Typenschlüssel Nutabdeckprofil	
Nutabdeckprofile		Typenschlüssel Nutensteine	
Aluminiumabdeckprofil		Typenschlüssel Planetengetriebe	
Kunststoffabdeckprofil		Typenschlüssel Portalverbindung	
Nutenstein1		Typenschlüssel Schmieranschlüsse	
TVationStorn1	5, 25 25, 47, 40, 50, 57	Typenschlüssel Steckwellen	
Р		Typenschlüssel Verbindungswellen	
Planetengetriebe	21-24 60-73	Typenschlüssel Verschleißteil - Set	
Portalverbindung		Typenschlüssel Winkelverbindung	
Positioniergenauigkeit		7,5	
Präzision			
F1dZISIUI1	14	V	
S		Verbindungswellen	65-6
Schalter	25 20 74 90 92 95	Verschleißteilset	
Anbauvarianten			
Kombinationsmöglichkeiten		W	
Leitungsführung		Wandmontage	1
Schaltervarianten		Wartung und Schmierung	
		Austausch Abdeckband	
Technische DatenSchlauchanschluss		Schmierintervalle	
		Schmiermengen	
Schlitteneinheit		Schmiermethoden	
Schlitteneinheit mit Profilnuten		Schmierstellen	
Schlitteneinheit mit stirnseitigen Schmiernippe		Schmierstoffe	
Schmierung		Verschleißteil - Set	
Schmierintervalle		Wiederholgenauigkeit	
Schmiermentenden		Winkelverbindung	
Schmiermethoden		William Civerbilliading	00, 02, 0
SchmierstellenSchmierstoffe		Z	
Schmiernippel		Zahnriemenspannung	
Sicherheitshinweise		Zubehör	
Standardachssysteme		A - Standardverbindung	
Statische Belastbarkeit		Antriebsadapter	
Steckwellen		Befestigungsleisten	
Steifigkeit	6, 13	Betätigungselemet	
-		Direktverbindung	
T	44.47	Endschaltersätze	
Transport		Energieketten	
Typenschlüssel		Kreuzverbindung	
Typenschlüssel A - Standardverbindung		Kupplung	
Typenschlüssel AXE		Kupplungsglocke	
Typenschlüssel Abdeckband		Nutabdeckprofile	
Typenschlüssel Antriebsadapter		Nutenstein	
Typenschlüssel Befestigungsleisten		Planetengetriebe	
Typenschlüssel Direktverbindung		Portalverbindung	
Typenschlüssel Energieketteneinheit		Schlauchanschluss	
Typenschlüssel Energiekettenführung			
Typenschlüssel Energiekettenglied		Schmiernippel	
Typenschlüssel Energiekettenunterstützung _		Steckwellen	
Typenschlüssel formschlüssige Antriebsadapti		Verbindungswellen	
Typenschlüssel kraftschlüssige Antriebsadapti	on	Winkelverbindung	62, 6

Mehr Information zu NTN-SNR Produkten aus dem Bereich Linear Motion finden Sie in unseren Katalogen

NTN-SNR Linear Motion Kugelgewindetriebe (BS)

NTN-SNR Linear Motion Linear Achen (AX)

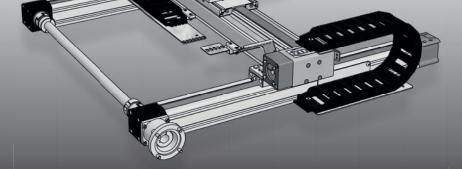

NTN-SNR Linear Motion Linearführungen (LG)

NTN-SNR Linear Motion Linearachen Produktprogramm

NTN-SNR Linear Motion Wireless Linear Measuring System

NTN-SNR Linear Motion Producktprogramm

NTN-SNR Linear Motion Kugelbuchsen (LBB)


NTN-SNR Linear Motion Nutwellenführungen (BSP)

www.ntn-snr.com/documents/linear

NTN-SNR LINEAR MOTION LINEAR ACHSEN AXE

SNR WÄLZLAGER GMBH

Friedrich-Hagemann-Straße 66 D-33719 Bielefeld

Telefon: +49 (0) 521 / 9 24 00 - 112 Telefax: +49 (0) 521 / 9 24 00 - 97 Email: linear@ntn-snr.de

www.ntn-snr.com/ntn-snr-linear-axis

Das vorliegende Dokument ist das alleinige Eigentum von NTN-SNR ROULEMENTS. Jegliche vollständige oder teilweise Reproduktion ohne vorhreige Genehmigung von NTN-SNR ROULEMENTS ist ausdrücklich verboten. Bei einem Verstoß gegen diesen Absatz können Sie strafferbittlich verfolgt werden.

Für Fehler oder Unterfassungen, die sich frotz aller Sorghit bei der Erstellung in das Dokument eingeschlichen haben könnten, lehnt NTN-SNR ROULEMENTS jede Haftung ab. Aufgrund einer kontinuierlichen Forschungs- und Entwicklungspolitik behalten wir uns vor, einzelne oder alle der in diesem Dokument dargestellten Produkte und Spezifikationen ohne Vorankündigung zu ändern.

© NTN-SNR ROULEMENTS, Internationales Copyright 2019.

